

OpenBAS BUILDING AUTOMATION SYSTEM

eZ HVAC and Building Automation Wizard

LT-6631 Rev. 0 June 2017

HVAC and building automation Wizard

The **eZ** App programing style for HVAC and building automation is a step forward in the way a solution to automate buildings is done.

It is designed from the ground up with the application in mind, reliving the user from the tedious job of having to know the details to accomplish the task of automating mechanical processes that are common for buildings.

At the bottom of the solution is a rock solid **OpenBAS** hardware that is field proven for years that has a rich set of peripherals to get tasks in building automation done in a fast, secure and economical way.

Layered on top of a family of controllers, that runs interactively ladder PLC instructions. This new layer of multi-language script compiler gets its input from a pre-built and tested solution templates library that is automatically generated by the App Wizard.

An eZ one step communication port and solution configurator eases the tedious task of having to start from scratch every time.

As shown on the image on next page the solution provides an entry level building automation designers with little experience to become proficient and be able to finish an automation solution in minutes, rather days.

With the added feature that experienced users will not lose control of a powerful set of tools that have been used for years.

As seen on the image above, the layered programming interface takes the solution from concept to final application in a matter of minutes.

Everything starts at the top, in the eZ Application Wizard, where choosing from a library of prebuilt solutions takes the user by the hand with a series of questions. When everything is answered with the single push of a button a script is generated in the language preferred by the user.

Next it automatically jumps to the Script compiler, where the user can optionally hand tune the script, or simply compile and load the solution.

As easy as it sounds, just like a piece of hot apple pie.

Address for communications 255 USB ComLogRit Image Lock CDMM # Device state Device state Statistice Page in service Es Controller name: Statistice Device state Statistice Pc Device state Statistice Pc Device state Statistice Pc Device state Statistice Pc Device state Device state Device state Pc Device state Device state Device state Device state	CopenBAS-SW-CFGTL Ver: 2.68.d 23/12/2016	www.mircomgroup.com	1-888-MIRCOM5 C	omST:[6,6,0,0,0]		1
Exp Common MGC Finance ConduogRit Finance	Address for communications			No auto update		
ComLogRat Lock COMM # Lock COMM # Autorearch COMM Autorearch COMM Image: List C:Prueba/abc/ Mathematic Command View status Labels Exit Device state Image: List C:Prueba/abc/ Command View status Labels Exit Command View status Labels Exit Command View status Labels Exit Command View status Labels Exit Command View status Labels Exit Command View status Labels Exit Command View status Labels Exit Command View status Command View status Labels Exit Command View status List C:Prueba/abc/ View status List C:Prueba/abc/	255 C ↓ USB C COM3 ↓ MGC C	٤.		42000 06200	<u>₹</u> →	
Lock COMM # Autosearch Comme Autosearch Comme Autosearch Line Autosearch Line Autosearch Line Autosearch Line Autosearch Line	ComLogRst C	Command	View status	Labels	Exit	
Mudseder/LOMM Ind Statistics Deck comm Ind Statistics Versions Operation Ind Ind Device state Ind Schedule Ind Ind Ind Ind Device state Ind Schedule Ind Ind	Lock COMM # C	000	Log gr.			
Device state Sw. 2.68 2:47 23/Dic/2016 Controller name: PLC Bring-generated Versions Active project Image: Lit: C:\Prueba\abc\ Change: Lit: C:\Prueba\abc\ Versions	Check comm. Info Check comm. Info COM3(USB) 0k Vet:: NXU/2 68, Hw2 Volts: 4, 9 Days in service: 6 Use IP (URL or IP add)			Web server	Easy start	
Controller name: Versions [Script-generated] Versions Active project Change List C\Prueba\abc\ ✓ Auto detect Versions	Device state	PLC	Param. setup		Password	
Active project English Change List C:\Prueba\abc\ ✓ Auto detect	Controller name:					
Active project Change List C\Prueba\abc\ If Auto detect		Versions				
V Auto detect	Change List C:\Prueba\abc\					
	Auto detect					

Everything starts here by selecting the eZ Start button; this will take you to the newly added screens that let you choose between a one button communication port setup for industry standard protocols as either a bus master or slave.

Next is the eZ Application Wizard button that will take us to the library template builder shown on the next screen.

One step, basic configuration of currently connected device	
×	
Make this device a bus master	
Make this device a bus slave	
Add slave devices to this bus master	
Name inputs and outputs for this device	
Wizard App generator for building automation	
Easy HVAC application wizard	
Script programming and program loader	
Script programming	
Change project Cancel	

Finally at the end is a direct access to the Script compiler where the programmer can edit, compile and download the application.

So now, because this should be as easy as 1, 2, and 3 let's get started by building a typical application using the eZ Application Wizard.

Generic HVAC and building control r	network applications	Cancel
oplication specific solutions	Г	Generate scripts in english (default script languag
Air handling units (AHU) applications	Fan and coil (FC) applications	Lighting control (LC) applications
Roof top units (RTU) applica		Power metering (PM) applications
Chiller (Cooled water) applica	HVAC App wizard generated all necessary script files.	ntilators and air extractors applications
Pump control and sequencing ap		ta touch screen application via Modbus
e-mail generator for alarms and	Yes No	Protocol conversion applications

By selecting from the pre-built libraries (Step 1) and answering some questions, now with this information the eZ Application Wizard generates all the necessary files (Step 2) and asks whether you want to compile and load the solution to the controller (Step 3).

It opens the generated solution for you to examine and optionally hand tune names, logic et. Here is an example of a typically generated solution.

By following the **1**, **2**, **3** step solution, we ended up in the "Script compiler". For experienced programmers this is heaven, as you can use the integrated "Script template generator" for the **OpenBAS** family of controllers and use pre-built templates that already include all the features that each controller has to offer with a single "push and create" feature as a good starting point. Call it a handicap if you want.

OpenBAS-HV-NX4AO 0-UI, 4-AO, 0-BO analog output expantion OpenBAS-HV-NX5F 8-UI, 0-AO, 0-BO input exp. with TC current meter +8 BI's OpenBAS-HV-NXFALF 4-UI, 2-AO, 4-BO small HVAC controller OpenBAS-HV-NX10P 8-UI, 2-AO, 4-BO small HVAC controller OpenBAS-HV-NX10P 16-UI, 4-AO, 16-BO (+1 1NX10P slave) OpenBAS-HV-NX10P 24-UI, 6-AO, 24-BO (+2 1NX10P slaves) OpenBAS-HV-NX10P 24-UI, 6-AO, 24-BO (+2 NX10P slaves) OpenBAS-HV-NX10P 32-UI, 8-AO, 32-BO (+3 NX10P slaves) OpenBAS-HV-NX10P 0-UI, 10-AO, 40-BO (+4 NX10P slaves) OpenBAS-HV-NX12R 1-UI, 0-AO, 12-BO (+4 NX10P slaves) OpenBAS-HV-NX12P 3-UI, 0-AO, 24-BO (+2 NX10P slaves) OpenBAS-HV-NX12P 0-UI, 10-AO, 24-BO (+4 NX10P slaves) OpenBAS-HV-NX12P 0-UI, 0-AO, 24-BO (+4 NX10P slaves) OpenBAS-HV-NX12P 1-UI, 0-AO, 24-BO (+4 NX10P slaves) OpenBAS-HV-NX12P 1-UI, 0-AO, 24-BO (+4 NX10P slaves)	Add all variable definition templates Add variable definitions for dual core processor Add e-mail messaages templates Add SMS text messagees templates
--	--

But because I don't want to bore you with **"advanced stuff"** right now, let's focus on the 1, 2, 3 solution.

1. Select from libra	ry of pre-built applications	DONE !
2. Generate the so	DONE !	
3. Compile and do	wnload the solution	DONE !
cript template generator and compiler C\Prueba\abc\	<u></u>)	
Script template generator		
Enable template generator options	Cancel	
Use multiple script and external definition files 1 Number of script files to create 1-10 Select hardware to use as templete	Select what to add when creating templates	ExWin
OpenBAS-HV-NX10P 8-UI, 2-AO, 8-BO HVAC controller	₩ Add sample code with all available instructions	
C Overwrite existing files without asking for confirmation	Add all variable definition templates Add variable definitions for dual core processor	Script compiled with no errors.
Generate initial script template file(s)	Add e-mail messaages templates Add SMS text messaages templates	
Control councils and download		
Script complie and download	- Intermediate output files generated during compile	
Open existing script file(s) for editing	Create detailed PLC ladder listing file (script.map) Open generated PLC instruction file after comple	
	Open all created intermediate files for viewing	
	Downoad to controller after compling scripts	
	Download generated database to controller	
	I Download generated PLC instructions	
	Force initialization of undeclared setpoints	$\mathbf{\nabla}$
	Initialize created setpoints	
	✓ Initialize created text lables with ID 's	ExWin
0700.0	Initialize created schedules	
Compile scripts and download to controller	Initialize created trend with graphics	
	Initialize created remote points	Do you want to download controller?
	Initialize created communication ports settings	
		Yes No

So now we are done, loading the application takes between a couple of seconds to a pair of minutes depending on the length of the program and the generated database objects, and finally a last question, the **eZ** Application Wizard asks if we want to view the loaded solution in the PLC editor and takes us directly there.

As I promised on the beginning, is like a slice of fresh backed apple pie.

Finally in the **"Ladder diagram PLC editor"** you can use the standard tools that have been available for more than half a decade to edit, document and fine tune the solution.

IOGIC_BLOCKS.TXT - Notepad	
File Edit Format View Help	
COMPARE <	*
AI-1 ++ TEMPERATU R RE R = A <b< td=""> KByte-23 R = A<b< td=""> +</b<></b<>	RES_BIT-240
ADB-1 ++ FAN_SPEED R COMMAND R KByte-1 R = A==B K_BYTE ++ Val.=0 ++	RES_BIT-239
	<u>+</u>
+	+
RES_BIT-240] [RES_BIT-238
RES_BIT-239	
· · · · · · · · · · · · · · · · · · ·	

As you can see the newly added tools simplify building automation. Just around the corner is the **"Network builder"** that with "drag and drop" will allow you to **"sketch or draw"** your networking solution and with the push of a button create a full networking project with ready to download solution.

This is how typically a **"Script"** looks like, remember it can be written in English, French, Spanish, Italian, German and Dutch, and the integrated Tower of Babel language converter will take the tedious and nauseous work of language translation away from you.

🧊 script_1.txt - Notepad
File Edit Format View Help
ENGLISH // English is default script compiler language, by eZ App Wizzard
//////////////////////////////////////
//////////////////////////////////////
//////////////////////////////////////
// The fan speed command ouputs are controlled by multistate setpoint: FAN_SPEED_COMMAND
<pre>[FAN_CONTROL] IF FAN_SPEED_COMMAND = FAN_OFF THEN \ FAN_LOW_SPEED_OUTPUT = OFF ALSO \ FAN_MED_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_OUTPUT = OFF IF FAN_SPEED_COMMAND = FAN_LOW THEN \ FAN_LOW_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_OUTPUT = OFF ALSO \ FAN_LOW_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_SPEED_OUTPUT = OFF ALSO \ FAN_HIGH_SPEED_SPEED_SPEED_SPEED_SPEED_SPEED_SPEED_SPEED_SPE</pre>
// The valves will only operate if the fan is running
[VALVE_CONTROL]
<pre>// Cooling valve control] IF TEMPERATURE > 25 AND FAN_SPEED_COMMAND != OFF THEN COOLING_VALVE = ON IF TEMPERATURE < 22 OR FAN_SPEED_COMMAND = 0 THEN COOLING_VALVE = OFF</pre>
<pre>// Heating valve control] IF TEMPERATURE IS < 18 AND FAN_SPEED_COMMAND IS NOT = OFF THEN HEATING_VALVE = ON IF TEMPERATURE IS > 22 OR FAN_SPEED_COMMAND = 0 THEN HEATING_VALVE = OFF</pre>
END

OpenBAS

Script compiler User's guide

Script compiler user's guide

The script compiler is a language that converts plain text into instructions that can be executed by the OpenBAS controllers. This language follows a syntax that will be described in the following sections and can be entered in the following ways:

- Manually following the syntax described in this document.
- Automatically generated by the HVAC AppWizard.
- Using templates generated by the script compiler template generation.

Regardless of the way the script was initially generated it can always be edited using any standard text editor as long as it is saved as PLAIN TEXT with no formatting such as added in Word or other rich text editors. Below is a diagram describing the creation of the script files and the compilation process.

As can be seen, the flow is as follows; the **eZ App wizard** generates based on the user preferences a pre-built and pre-tested solution that can be directly compiled and loaded to the controller. It does so by generating a pair of files:

<u>script_autoRun.txt</u> which is a script file with the user selected options that is generated in the script's native language which is English.

From here the language translator generates the <u>script 1.txt</u> file that if the user selects will be translated to the user's preferred language. Only keywords are translated, the names of the variables are presented to the user prior to generating the scripts in English as he or she can manually translate their names to something meaningful for the application in the desired language.

When the eZ wizard is invoked for the first time, will ask if we want to use:

- The current project
- An already existing project
- A new project

Confirm to overwrite files in current project				
The eZ setup, App Wizard and Script compiler will overwrite current project files. Is this accptable, or you want to create a new project?				
C:\Prueba\xyz\				
Mgc P I				
Use current project	Select an existing project	Create a new project		

Once the selection is done, select the HVAC application wizard to start creating the application.

Wizard App generator for building automation	
Easy HVAC application wizard	

Here a screen showing the different type of pre-built applications will appear. From this screen the user can select if the languages to be created will be translated by checking the language select checkbox, if English is selected the checkbox is disabled and no translation will take place.

Building Automation System

App Wizard generator for building automation and I	HVAC application	x
Generic HVAC and building control netwo	ork applications	Cancel
Application specific solutions		Generate scripts in english (default script language)
Air handling units (AHU) applications	Fan and coil (FC) applications	Lighting control (LC) applications
Roof top units (RTU) applications	Variable air volume (VAV) applications	Power metering (PM) applications
Chiller (Cooled water) applications	Wireless thermostats applications	Ventilators and air extractors applications
Pump control and sequencing applications	Wired RS-485 thermostat applications	Delta touch screen application via Modbus
e-mail generator for alarms and events	SMS message generator for alarms and events	Protocol conversion applications

Once an application is selected, a couple of screens will sequentially pop up showing first, the communication features, then the operation modes and finally the trend information.

Z App Wizard Q&A	
Communication features	
C Standalone controller	-Slave protocol
O Networked controller as slave	⊙ Opto-22 ○ N2-Open ○ Modbus ○ BACnet
O Networked controller as master	1 Slave address
 Networked controller as slave and master 	Slave address
	-Master protocol
	○ Opto-22 ○ N2-Open ○ Modbus ○ BACnet
Add Ethernet network controller	Use dual core
Add SMS text message generator	Add remote points wired examples
	Add remote points wireless examples
 ✓ Runs based on schedules ✓ Runs with local external enable ✓ Runs with remote command 	✓ Monday ✓ Tuesday ✓ Wednesday ✓ Thursday ✓ Friday Saturday Holiday
□ Trend information	15 min. Sampling time
	Next >>> Cancel

eZ Name inputs and outputs			<u> </u>
Universal inputs		Binary outputs	Analog outputs
BI_1 RUN_EXT_ENABLE	Config. 🗖 Analog	BO_1	AO_1 ACTUATOR
AI_2 TEMPERATURE	Config.	BO 2	A0_2 Analog input configuration
AI_3 PRESSURE	Config. 🔽 Analog	BO_3	AO_3 # Select type of analog input
BI_4	Config. Config.	BO_4	A0_4 A0_4 The value is an offset (+/-)
BI_5	Config. 🗌 🗖 Analog	BO_5	AO_5 0 Temperature Sensor 1000 Ohms @ 21 °C Silicone. The DID-SW must be ON.
BI_6	Config. 🗖 Analog	BO_6	AO_6 The offset value is added or subtracted from the read value.
BI_7	Config. 🗌 Analog	BO_7	A0_7
BI_8	Config, 🗌 🗖 Analog	BO_8	A0_8 0k
BI_9	Config. 🗌 Analog	BO_9	AO_9 Exit
BI_10	Config. 🗌 🗖 Analog	BO_10	A0_10
>>>			Ok Exit

In this dialog box the I/O names can be edited, as well as the universal inputs can be selected as analog or digital, and their default configuration can be set.

Setpoint	Stages
Setpoint	Stages
22.5	2
Prop.band	
1.5	
ОК	OK
Cancel	Cancel

Optionally depending on the application selected, more screens to fill parameters such as; set points, number of stages etc., will keep showing until all required data is gathered, at which point the script will be created and optionally translated.

After this step, the **script compiler** is automatically invoked. All the previous steps of the **eZ App wizard** can be skipped if the user wants to manually create the script files or copy them from a previous project and manually modify them. Optionally also the script compiler has a script template generator that can generate one or multiple template files to better organize the whole project. Also an external definition file can be added to the project, so definitions common to all script files can be located there. This way the script files will be less cluttered and contain only logic sentences describing the program.

The script compiler needs at least one source file that must be named <u>script 1.txt.</u> If additional files are added to the project they must be named sequentially <u>script 2.txt</u> and up to <u>script 10.txt</u>. If the external definition file is included to the project, it must be named <u>script_def.txt</u>.

If the script files are in a language other than English, <u>the first line</u> of either <u>script_def.txt</u> if it exists or <u>script_1.txt</u> must contain the language directive or an error will be generated because the keyword's language will be undefined. These language directives are as listed in the following table:

	B	F	ES	DE	T	NL
Language selector	ENGLISH	FRENCH	SPANISH	GERMAN	ITALIAN	DUTCH
Alternate		FRANÇAIS	ESPAÑOL	DEUTSCH	ITALIANO	NEDERLANDS

Both the script compiler section as well as the template generator section are depicted on the picture below. By default the template generator section is disabled, but can be enabled by checking the "Enable template generator" checkbox.

IX script template generator and compiler C:\Prueba\xyz\		×
Script template generator C Enable template generator options C Use multiple script and external definition files		Cancel
1 Number of script files to create 1-10 Select hardware to use as template	Select what to add when creating templates Image: Select what to add when creating templates	
OpenBAS-HV-NX 10P 8-UI, 2-AO, 8-BO HVAC controller	 Add sample code with all available instructions Add all variable definition templates Add variable definitions for dual core processor 	
Generate initial script template file(s)	Add e-mail messaages templates Add SMS text messagees templates	
-Script compile and download Open existing script file(s) for editing	Intermediate output files generated during compile — Create detailed PLC ladder listing file (script.mag Open generated PLC instruction file after compi Open all created intermediate files for viewing) e
Compile scripts and download to controller	Downoad to controller after compiling scripts Download generated database to controller Download generated PLC instructions Force initialization of undedared setpoints Initialize created setpoints Initialize created text lables with ID's Initialize created schedules Initialize created trend with graphics Initialize created remote points Initialize created communication ports settings	
Use small stack for RES_BIT (overlapped)	✓ Initialize created calibration for analog inputs	

If the user wants to edit the existing file(s) there is a button that opens all the existing script and the optionally definition files at once.

The checkboxes to the right of this button allow the intermediate generated files to be opened after the compile process for viewing. They usually are not shown if compile goes without errors, if however any syntax of declaration error exists, the intermediate files that have already been processed and created will be opened.

At the point where an error is found during the compiling process, an error text will be added to the generated intermediate file(s) giving an error code and a brief explanation of the kind of error found. At the end of this document, in the appendix named "<u>compiler errors</u>", a comprehensive list with all the errors and their possible solutions can be found.

The "<u>Compile scripts and download to controller</u>" button does just what its name implies, compiles the script, and by generating the intermediate files one after the other at the end creates an OpenBAS database that will be loaded to the controller automatically.

To the right of this compile button, a group of checkboxes allows the user to manually select what is to be downloaded. By default all created database objects by the compile process are downloaded to the controller.

This compile and download process takes between a couple of seconds to a couple of minutes depending on the size of the program and the created database objects.

Once the whole process is completed, the script compiler asks if you want to proceed to the PLC editor to view and optionally fine tune and debug the program online.

The intermediate **LINK** and **MAP** files contain the source code as well as the generated PLC instructions so the user can refer to each section of his or her source file and see what was created. The next section of this manual will explain the script compiler syntax.

Before proceeding to the script compiler in detail the following tables describe the database objects and the keywords that can be used in each of the supported languages.

Database objects table.

Database object	Ranges	GB	FR	ES	DE		NL	
Analog inputs	1-40	Al_x	EA_x	EA_x	AE_x	IA_x	Al_x	
Binary inputs	1-40	BI_x	EB_x	EB_x	BE_x	IB_x	BI_x	
Analog outputs	1-10	AO_x	SA_x	SA_x	AA_x	UA_x	AU_x	
Binary outputs	1-60	BO_x	SB_x	SB_x	BA_x	UB_x	BU_x	
EEprom 32 bits	1-100			AD	F_x			
EEprom 16 bits	1-100			AD	0l_x			
EEprom 8 bits	1-100	ADB_x						
Lighting groups	1-20	LG_x						
RAM result 1 bit	1-255		RES_BIT_x					
RAM result 32 bit	´1-40	RES_FLT_x						
Timers	´1-16	TMR_x TIMER_x						
D	1.50							
Remote registers	1-50			REMO	DTE_x			
Remote reg. exp	51-255	 RMT_RES_x						
Integer constants	0.252	KBYT_x						
integer constants	0-255			KBY	TE_x			
Elect constants	any float value			K_F	LT_x			
FIDAL CONSTANTS	any noat value	K_FLOAT_x						

Note that the English versions of the hardware I/O will always be available, so are the keywords, so a user writing for example the script in French can freely use English and French keywords and database objects intermixed.

On the next six pages the keyword list for the different languages is shown. Note that accents and other nonstandard characters have been replaced with standard non accented ASCII characters to make language translation easy to work with.

All words are case insensitive so the user can write in capital or non-capital or mixed characters. For some keywords and database objects there are shorthand versions of some words to make script programming easier.

Keywords table 1 of 6

Keyword	GB	FR	ES
KWD NULL	NULL	NULL	NULL
KWD IF	IF	SI	SI
KWD ELSE	ELSE	AUTRE	CASO CONTRARIO
KWD THEN	THEN	PUIS	ENTONCES
	JUMP	SAUT	BRINCA
KWD CALL	CALL	APPEL	LLAMA
KWD SCRIPT 1	SCRIPT 1	SCRIPT 1	SCRIPT 1
KWD SCRIPT 2	SCRIPT 2	SCRIPT 2	SCRIPT 2
KWD SCRIPT 3	SCRIPT 3	SCRIPT 3	SCRIPT 3
KWD SCRIPT 4	SCRIPT 4	SCRIPT 4	SCRIPT 4
KWD SCRIPT 5	SCRIPT 5	SCBIPT 5	SCRIPT 5
KWD SCRIPT 6	SCRIPT 6	SCRIPT 6	SCRIPT 6
KWD SCRIPT 7	SCRIPT 7	SCRIPT 7	SCRIPT 7
KWD SCRIPT 8	SCRIPT 8	SCRIPT 8	SCRIPT 8
KWD SCRIPT 9	SCRIPT 9	SCRIPT 9	SCRIPT 9
KWD SCRIPT 10	SCRIPT 10	SCRIPT 10	SCRIPT 10
KWD SEC	SECONDS	SECONDES	SEGUNDOS
KWD SEC 1 10	SEC0110	SEC 1 10	SEG 1 10
	RUN		CORRE
		CHARGER	CARGA
		FTRF	FS
	NOT	NON	NO
	EMBG STOP		
	Elwind_Stor	ANNET_D_ONGENCE	TARO_EMERO
	<u> </u>	<	-
	<u> </u>		<u> </u>
	×-	~	
	-	-	-
	I-		-
	+	+	+
KWD SUBSTRACT			
	*	*	*
	/	/	/
	MIN	MIN	, MIN
KWD MAX	MAX	MAX	MAX
KWD AVG	AVG	MOYENNE	PROMEDIO
KWD ADD ASGN	+=	+=	+=
KWD SUB ASGN	-=	-=	-=
KWD DIV ASGN	/=	/=	/=
KWD_MUL_ASGN	*=	*=	*=
KWD_ON	ON	ALLUME	ENCENDIDO
KWD_OFF	OFF	ETEINDRE	APAGADO
KWD_OPEN	OPEN	OUVERT	ABIERTO
KWD_CLOSED	CLOSED	FERME	CERRADO
KWD_TRUE	TRUE	VRAI	VERDADERO
KWD_FALSE	FALSE	FAUX	FALSO
KWD_DEFINE	DEFINE	DEFINIR	DEFINE
KWD_DEF	DEF	DEF	DEF
KWD_TIMER	TIMER	MINUTEUR	TEMPORIZADOR
KWD_OSCILATOR	OSCILATOR	OSCILLATEUR	OSCILADOR
KWD_FREQUENCY	FREQUENCY	FREQUENCE	FRECUENCIA
KWD_AND	AND	ET	Y
KWD_NAND	NAND	ET_INVERSE	Y_NEGADO
KWD_OR	OR	OU	0
KWD_NOR	NOR	OU_INVERSE	O_NEGADO
KWD_XOR	XOR	XOR	O_EXCLUSIVO
KWD_NXOR	NXOR	XOR_INVERSE	O_EXCLUSIVO_NEGADO
KWD_INVERT	INVERT	INVERSER	INVERTIR
KWD_AND_OR	AND_OR	ET_OU	Y_O

Keywords table 2 of 6

Keyword	GB	FR	ES
KWD AND NOR	AND NOR	ET OU INVERSE	Y O NEGADO
KWD_SET	SET	SET	FIJAR_A_1
KWD_RESET	RESET	RESET	FIJAR_A_0
KWD_INSIDE	INSIDE	INTERIEUR	DENTRO_DE
KWD_OUTSIDE	OUTSIDE	EXTERIEUR	FUERA_DE
KWD_LT_GROUP	LT_GROUP	GROUPE_D_ECLAIRAGE	GRUPO_ILUM
KWD_PROP_CTRL	PROP_CTRL	CONTROLE_PROPORTIONNEL	CONTROL_PROP
KWD_TOTALIZE	TOTALIZE	TOTALISATEUR	TOTALIZADOR
KWD_HOUR_CNT	HOUR_COUNTER	COMPTEUR_D_HEURES	HOROMETRO
KWD_HVAC_STAGE	HVAC_STAGE	ETAPE_HVAC	ETAPA_HVAC
KWD_ALTERNATE	ALTERNATE	ALTERNER	ALTERNADO
KWD_SCHEDULE	SCHEDULE	CALENDRIER	HORARIO
KWD_TREND	TREND	TENDANCE	TENDENCIA
KWD_REMOTE	REMOTE	ELOIGNE	REMOTO
KWD_WIRELESS_LINK	WIRELESS_LINK	LIAISON_SANS_FIL	ENLACE_INALAMBRICO
KWD_COMM	COMM	COMM	COMM
	E_MAIL	E_MAIL	E_MAIL
KWD_SMS_TEXT	SMS_TEXT	TEXTE_SMS	SMS_TEXTO
KWD_ALSO	ALSO	AUSSI	
	WIIH	AVEC	CON
			SUMA
	SUBSTRACT	SUBTRACTION	RESTA
		MOLTIPLICATION	DIVISION
	START		PARO
	SUB END	SUB FIN	SUB FIN
KWD END	END	FIN	FIN
KWD HYSTERESIS	HYSTERESIS	HYSTERESE	HISTERESIS
KWD START PLC	START PLC	DEPART PLC	INICIO PLC
KWD_DAY	DAY	JOUR	DIA
KWD_WEEK	WEEK	SEMAINE	SEMANA
KWD_MONTH	MONTH	MOIS	MES
KWD_PERIOD	PERIOD	PERIODE	PERIODO
KWD_VALUE	VALUE	VALEUR	VALOR
KWD_INITIALIZE	INITIALIZE	INITIALISER	INICIALIZA
KWD_PV	PV	VP	VP
KWD_SP	SP	CONSIGNE	P_AJ
KWD_PB	PB	B_PROP	B_PROP
KWD_INTEG	INTEG	INTEG	INTEG
KWD_EEPROM	EEPROM	EEPROM	EEPROM
KWD_PLC_COUNTER	PLC_COUNTER	AJUSTER_INSTRUCTION_PLC	AJUSTE_INSTRUCCION_PLC
		SUR_LE_CHANGEMENT	
		DERNIERE_PERIODE	
KWD_ALT_STAGES			ΔΙΤ ΕΤΔΡΔ
KWD ALT TMR NEXT STAGE	ALT TMR NEXT STAGE	ALT TM SUIV FTAPE	ALT TM SIG FTAPA
KWD ALT TMR ALARM	ALT TMR ALARM	ALT TM ALARME	ALT TM ALARMA
KWD_ALT_EXT_ENABLE	ALT_EXT_ENABLE	ALT_ACTIV EXT	ALT_HABIL EXT
KWD_ALT_FEEDBACK	ALT_FEEDBACK	ALT_RETOUR	ALT_RETROALIM
KWD_ALT_PARALLEL	ALT_PARALLEL	ALT_PARALLELE	ALT_SIMULTANEO
KWD_PARTIAL_COUNT	PARTIAL_COUNT	COMPTE_PARTIEL	CUENTA_PARCIAL
KWD_COOLING	COOLING	REFROIDISSEMENT	ENFRIAMIENTO
KWD_HEATING	HEATING	CHAUFFAGE	CALEFACCION
KWD_TMR_MINIMUM_ON	TMR_MINIMUM_ON	TMR_MIN_ALLUMER	TMR_MINIMO_ENC

Keywords table 3 of 6

Keyword	GB	FR	ES	
	TMR MINIMUM OFF	TMR MIN ARRET	TMR MINIMO APAG	
		TMR INTERETAPES	TMR INTERETAPAS	
KWD STAGE RUN	STAGE RUN	VALIDACION ETAPE	PERMISIVO ETAPA	
KWD INTERVAL MINUTES	INTERVAL MINUTES	INTERVALLE MINUTES	INTERVALO MINUTOS	
KWD READ COIL	READ COIL	READ COIL	READ COIL	
KWD_READ_INPUT_STATUS	READ_INPUT_STATUS	READ_INPUT_STATUS	READ_INPUT_STATUS	
KWD_READ_INPUT_REGISTER	READ_INPUT_REGISTER	READ_INPUT_REGISTER	READ_INPUT_REGISTER	
KWD_READ_HOLDING_REGISTER	READ_HOLDING_REGISTER	READ_HOLDING_REGISTER	READ_HOLDING_REGISTER	
KWD_ANALOG_VALUE	ANALOG_VALUE	ANALOG_VALUE	ANALOG_VALUE	
KWD_BINARY_VALUE	BINARY_VALUE	BINARY_VALUE	BINARY_VALUE	
KWD_NX_SLAVE	NX_SLAVE	NX_ESCLAVE	NX_ESCLAVO	
KWD_WLS_TEMP_C	WLS_TEMP_C	WLS_TEMP_C	WLS_TEMP_C	
KWD_WLS_TEMP_F	WLS_TEMP_F	WLS_TEMP_F	WLS_TEMP_F	
KWD_WLS_REL_HUM	WLS_REL_HUM	WLS_HUM_REL	WLS_HUM_REL	
KWD_WLS_MODE	WLS_MODE	WLS_MODE	WLS_MODO	
KWD_WLS_FAN_SPEED	WLS_FAN_SPEED	WLS_VEL_VENTILATEUR	WLS_VEL_VENTILADOR	
KWD_WLS_KEYBOARD	WLS_KEYBOARD	WLS_CLAVIER	WLS_TECLADO	
KWD_WLS_SP_TEMP	WLS_SP_TEMP	WLS_PC_TEMP	WLS_PA_TEMP	
KWD_WLS_SP_HUM	WLS_SP_HUM	WLS_PC_HUM	WLS_PA_HUM	
KWD_WLS_SP_T1	WLS_SP_T1	WLS_PC_T1	WLS_PA_T1	
KWD_WLS_SP_PB	WLS_SP_PB	WLS_PC_BP	WLS_PA_BP	
KWD_WLS_SP_UNOCC	WLS_SP_UNOCC	WLS_PC_INOCCUPE	WLS_PA_DESOC	
KWD_WLS_BATTERY_VOLTAGE	WLS_BATTERY_VOLTAGE	WLS_VOLTAGE_BATTERIE	WLS_VOLTAJE_BATERIA	
KWD_WLS_AUX_INP	WLS_AUX_INP	WLS_ENT_AUX	WLS_ENT_AUX	
KWD_WLS_LINK_TMR	WLS_LINK_TMR	WLS_TM_LIEN	WLS_TM_ENLACE	
KWD_WLS_SEC_LINK_LOST	WLS_SEC_LINK_LOST	WLS_SEC_SANS_LIEN	WLS_SEC_SIN_ENLACE	
KWD_CONTROLLER_NAME	CONTROLLER_NAME	NOM_CONTROLEUR	NOMBRE_CONTROLADOR	
KWD_WLS_GROUP	WLS_GROUP	WLS_GRUPE	WLS_GRUPO	
KWD_WLS_ADDRESS	WLS_ADDRESS	WLS_ADDRESSE	WLS_DIRECCION	
KWD_DEVICE_ADDRESS	DEVICE_ADDRESS	ADDRESSE_COM	DIRECCION_COM	
KWD_PARITY_NONE	PARITY_NONE	PARITE_SANS	PARIDAD_SIN	
KWD_PARITY_ODD	PARITY_ODD	PARITE_IMPAIRE	PARIDAD_NON	
KWD_PARITY_EVEN	PARITY_EVEN	PARITE_PAIRE	PARIDAD_PAR	
KWD_STOP_BIT_0	STOP_BIT_0	BIT_D_ARRET_0	BIT_PARO_0	
KWD_STOP_BIT_1	STOP_BIT_1	BIT_D_ARRET_1	BIT_PARO_1	
KWD_PROTOCOL_ASCII_TERMINAL	PROTOCOL_ASCII_TERMINAL	PROTOCOLE_ASCII_TERMINAL	PROTOCOLO_ASCII_TERMINAL	
KWD_PROTOCOL_OPTO_22_SLAVE	PROTOCOL_OPTO_22_SLAVE	PROTOCOLE_OPTO_22_ESCLAVE	PROTOCOLO_OPTO_22_ESCLAVO	
KWD_PROTOCOL_N2_OPEN_SLAVE	PROTOCOL_N2_OPEN_SLAVE	PROTOCOLE_N2_OPEN_ESCLAVE	PROTOCOLO_N2_OPEN_ESCLAVO	
KWD_PROTOCOL_MODBUS_SLAVE	PROTOCOL_MODBUS_SLAVE	PROTOCOLE_MODBUS_ESCLAVE	PROTOCOLO_MODBUS_ESCLAVO	
KWD_PROTOCOL_BANCET_MSTP	PROTOCOL_BANCET_MSTP	PROTOCOLE_BANCET_MSTP	PROTOCOLO_BANCET_MSTP	
KWD_PROTOCOL_022_MASTER	PROTOCOL_OPTO22_MASTER	PROTOCOLE_OPTO22_MAITRE	PROTOCOLO_OPTO22_MAESTRO	
KWD_PROTOCOL_MODBUS_MASTER		PROTOCOLE_MODBUS_MAITRE		
	BAUD_KATE	BAUD	BAUDIUS	
KWD_SCRIPT_LAST	SCRIPT_END	SCRIPT_END	SCRIPT_END	

Keywords table 4 of 6

		T	
Keyword			
KWD_NULL	NULL	NULL	NULL
KWD_IF	OB	NEL_CASO_QUE	ALS
KWD_ELSE	SONST	ALTRIMENTI	ANDERS
KWD_THEN	DANN	ALORA	DAN
	SPRING	SALIARE	SPRING
		CHIAMATA	OPROEP
	SCRIPT_1	SCRIPT_1	SCRIPT_1
	SCRIPT_2	SCRIPT_2	SCRIPT_2
		SCRIPT_3	SCRIPT_3
		SCRIPT_4	SCRIPT_4
		SCRIPT_5	SCRIPT_5
		SCRIPT_7	
KWD_SEC_1_10	SEK 1 10	SEC 1 10	SEC0105
	BELAST	CARICARE	
	IST	SFI	
KWD NOT	NICHT	NO	NIFT
			NOODSTOP
	<	<	<
	<= <=	<= <=	<=
	>	>	>
	>=	>=	>=
KWD ASSIGN	=	=	=
KWD CMP NOT EQUAL	!=	!=	!=
KWD ADD	+	+	+
KWD SUBSTRACT	-	-	_
	*	*	*
KWD_DIVIDE	/	/	/
KWD_MIN	MIN	MIN	MIN
KWD_MAX	MAX	MASSIMO	MAX
KWD_AVG	DURCHSCHNITT	MEDIA	GEMIDDELDE
KWD_ADD_ASGN	+=	+=	+=
KWD_SUB_ASGN	-=	-=	-=
KWD_DIV_ASGN	/=	/=	/=
KWD_MUL_ASGN	*=	*=	*=
KWD_ON	EINSCHALT	ACCENDE	AANDOEN
KWD_OFF	AUSSCHALT	SPENGE	UITDOEN
KWD_OPEN	OFFEN	APERTO	OPEN
KWD_CLOSED	GESCHLOSSEN	CHIUSO	DICHT
KWD_TRUE	WAHR	VERO	WAAR
KWD_FALSE	VALS	FALSO	VALS
KWD_DEFINE	DEFINIEREN	DEFINIRE	BEPALEN
KWD_DEF	DEF	DEF	DEF
	TIMER	TIMER	TIMER
	OSZILLATOR	OSCILLATORE	OSCILLATOR
	FREQUENZ	FREQUENZA	FREQUENTIE
KWD_AND	UND	E	EN
KWD_NAND	UND_UMDREHT	E_ROVESCIATO	EN_OMZETTEND
	ODER UNISSENT	0	
	ODER_UMDREHT	U_ROVESCIATO	OF_OMZETTEND
		KUVESCIATU	
KWD_AND_OR	UND_ODER	E_U	EN_OF

Keywords table 5 of 6

Keyword	DE	1	
KWD_AND_NOR	UND ODER UMDREHT	E O ROVESCIATO	EN OF OMZETTEND
KWD_SET	SETZEN	SET	SET
KWD_RESET	ZURUECKSETZEN	RESET	RESET
KWD_INSIDE	INNEN	DENTRO	BINNEN
KWD_OUTSIDE	AUSSEN	FUORI	BUITEN
KWD_LT_GROUP	BELEUCHTUNGSGRUPPE	GRUPO_ILUM	LICHTGROEP
KWD_PROP_CTRL	PROP_BEDIENUNG	CONTROLLO_PROP	PROP_BEDIENING
KWD_TOTALIZE	ZAEHLER	TOTALIZZATORE	TOTALIZATOR
KWD_HOUR_CNT	STUNDEN_ZAEHLER	CONTAORE	URENTELLER
KWD_HVAC_STAGE	HVAC_STUFE	STADIO_HVAC	HVAC_ETAPPE
KWD_ALTERNATE	ALTERNIEREN	ALTERNATO	AFWISSELEN
KWD_SCHEDULE	ZEITPLAN	ORARIO	DIENSTREGELING
KWD_TREND	TENDENZ	TENDENZA	TREND
KWD_REMOTE	FERNPUNKT	PUNTO_A_DISTANZA	AFGELEGEN
KWD_WIRELESS_LINK	DRAHTLOSE_VERBINDUNG	COLLEGAMENTO_SENZA_FILI	DRAADLOZE_VERBINDING
KWD_COMM	COMM	COMM	СОММ
KWD_E_MAIL	E_MAIL	E_MAIL	E_MAIL
KWD_SMS_TEXT	SMS_TEXT	SMS_TESTO	SMS_TEKST
KWD_ALSO	AUCH	ANCHE	OOK
KWD_WITH	MIT	CON	MET
KWD_ADD_T	ADDITION	AGGIUNGERE	TOEVOEGEN
KWD_SUBSTRACT_T	SUBSTRAKTION	SOTTRAZIONE	AFTREKKEN
	MULTIPLIZIEREN	MOLTIPLICARE	VERMENIGVULDIGEN
		DIVIDERE	VERDELEN
KWD_START	STARTEN	PARTENZA	STARTEN
KWD_STOP	STOPPEN	ARRESTO	STOPPEN
	SUB_BEGIN	SUB_INIZIO	SUB_BEGIN
		SUB_FINE	
		GIOBNO	DAG
	WOCHE	SETTIMANA	WEEK
	MONAT	MESE	MAAND
KWD PFRIOD	PERIODE	PERIODO	PEBIODE
KWD VALUE	WERT	VALORE	WAARDE
KWD INITIALIZE	INITIALISIEREN	INIZIALIZZARE	INITIALIZE
KWD PV	ISTWERT	VP	PV
KWD_SP	SOLLWERT	SP	SETPUNT
KWD_PB	РВ	B PROP	РВ
KWD_INTEG	INTEG	INTEG	INTEG
KWD_EEPROM	EEPROM	EEPROM	EEPROM
KWD_PLC_COUNTER	PLC_ZAEHLER_SET	PLC_CONTATORE_SET	PLC_TELLER_SET
KWD_ON_CHANGE	BEI_AENDERUNG	SUL_CAMBIAMENTO	OP_VERANDERING
KWD_LAST_PERIOD	LETZTE_PERIODE	ULTIMO_PERIODO	LAATSTE_PERIODE
KWD_PARTIAL_KW	PARTIELL_KW	PARZIALE_KW	PARTIEEL_KW
KWD_PARTIAL_ACC	PARTIELL_AKKUMULIERT	PARZIALE_ACUMULATO	PARTIEEL_GEACCUMULEERDE
KWD_SAMPLE_COUNT	PROBENZAEHLUNG	CONTEGGIO_CAMPIONI	MONSTER_TELLER
KWD_ALT_OUTPUT	ALT_AUSGANG	ALT_USCITA	ALT_UITGANG
KWD_ALT_STAGES	ALT_STUFEN	ALT_STADIO	ALT_ETAPPE
KWD_ALT_LEADER	ALT_FUHRER	ALT_DIRETTORE	ALT_AANVOERDER
KWD_ALT_DEC_INC	ALT_DEC_INC	ALT_DEC_INC	ALT_DEC_INC
KWD_ALT_TMR_NEXT_STAGE	ALT_NACHSTE_STUFE	ALT_PROSSIMO_STADIO	ALT_VOLGENDE_ETAPPE
KWD_ALT_TMR_ALARM	ALT_TMR_ALARM	ALT_TMR_ALLARME	ALT_TMR_ALARM
	ALI_EXI_FREIGABE	ALT_ABILITAZIONE_EST	ALI_EXI_SCHAKELEN
	LIVIK_IVIIN_EIN	TIVIK_IVIIN_ACCENDERE	

Keywords table 6 of 6

Keyeword			NL	
	TMP MINI ALIS	TMR MIN SDEGNERE		
KWD READ INPUT STATUS		READ INPUT STATUS		
KWD READ INPUT REGISTER	READ INPLIT REGISTER	READ INPUT REGISTER	READ INPUT REGISTER	
KWD READ HOLDING REGISTER		READ HOLDING REGISTER		
	BINARY VALUE	BINARY VALUE	BINARY VALUE	
		WIS TEMP C	WIS TEMP C	
	WIS TEMP F	WIS TEMP F		
	WLS REL FEUCHTIGKEIT	WLS UMIDITA REL	WLS REL VOCHTIGHEID	
	WLS MODUS	WLS MODALITA	WLS MODE	
KWD WLS FAN SPEED	WLS LUFTER GESCHWINDIGKEIT	WLS VELOCITA VENT	WLS VENT SNELHEID	
KWD WLS KEYBOARD	WLS TESTATUR	WLS TESTIERA	WLS TOETSENBORD	
KWD WLS SP TEMP	WLS SP TEMP	WLS SP TEMP	WLS SP TEMP	
KWD WLS SP HUM	WLS SP FEUCHTIGKEIT	WLS SP UMIDITA	WLS SP VOCHTIGHEID	
KWD WLS SP T1	WLS SP T1	WLS SP T1	WLS SP T1	
KWD WLS SP PB	WLS SP PB	WLS SP PB	WLS SP PB	
	WLS SP UNBESETZ	WLS SP DISOCCUPATO	WLS SP ONBEZET	
KWD_WLS_BATTERY_VOLTAGE	WLS_BATTERIESPANNUNG	WLS_VOLTAGIO_BATTERIA	WLS_BATTERIJ_VOLTAGE	
KWD_WLS_AUX_INP	WLS_AUX_EIN	WLS_AUX_ING	WLS_AUX_ING	
KWD_WLS_LINK_TMR	WLS_LINK_TMR	WLS_LINK_TMR	WLS_LINK_TMR	
KWD_WLS_SEC_LINK_LOST	WLS_SEK_KEIN_LINK	WLS_SEC_SENSA_COLLEGAMENTO	WLS_SEC_ZONDER_KOPPELING	
KWD_CONTROLLER_NAME	REGLERNAME	NOME_DISPOSITIVO	CONTROLLER_NAAM	
KWD_WLS_GROUP	WLS_GRUPPE	WLS_GRUPPO	WLS_GROEP	
KWD_WLS_ADDRESS	WLS_ADDRESSE	WLS_INDIRIZZO	WLS_ADRES	
KWD_DEVICE_ADDRESS	REGLERADRESSE	INDIRIZZO_DISPOSITIVO	CONTROLLER_ADRES	
KWD_PARITY_NONE	PARITAT_KEINE	PARITA_NESSUNA	PARITEIT_NONE	
KWD_PARITY_ODD	PARITAT_UNGERADE	PARITA_DISPARI	PARITEIT_ONEVEN	
KWD_PARITY_EVEN	PARITAT_SOGAR	PARITA_PARI	PARITEIT_EVEN	
KWD_STOP_BIT_0	STOP_BIT_0	STOP_BIT_0	STOP_BIT_0	
KWD_STOP_BIT_1	STOP_BIT_1	STOP_BIT_1	STOP_BIT_1	
KWD_PROTOCOL_ASCII_TERMINAL	PROTOKOLL_ASCII_TERMINAL	PROTOCOLLO_ASCII_TERMINAL	PROTOCOL_ASCII_TERMINAL	
KWD_PROTOCOL_OPTO_22_SLAVE	PROTOKOLL_OPTO_22_SLAVE	PROTOCOLLO_OPTO_22_SCHIAVO	PROTOCOL_OPTO_22_SLAAF	
KWD_PROTOCOL_N2_OPEN_SLAVE	PROTOKOLL_N2_OPEN_SLAVE	PROTOCOLLO_N2_OPEN_SCHIAVO	PROTOCOL_N2_OPEN_SLAAF	
KWD_PROTOCOL_MODBUS_SLAVE	PROTOKOLL_MODBUS_SLAVE	PROTOCOLLO_MODBUS_SCHIAVO	PROTOCOL_MODBUS_SLAAF	
KWD_PROTOCOL_BANCET_MSTP	PROTOKOLL_BANCET_MSTP	PROTOCOLLO_BANCET_MSTP	PROTOCOL_BANCET_MSTP	
KWD_PROTOCOL_022_MASTER	PROTOKOLL_OPTO22_MEISTER	PROTOCOLLO_OPTO22_MASTER	PROTOCOL_OPTO22_MEESTER	
KWD_PROTOCOL_MODBUS_MASTER	PROTOKOLL_MODBUS_MEISTER	PROTOCOLLO_MODBUS_MASTER	PROTOCOL_MODBUS_MEESTER	
KWD_BAUD_RATE	BAUD	BAUD	BAUD	
KWD_AI_CONFIG	AE_KONFIGURATION	IA_CONFIGURAZIONE	IA_CONFIGURATIE	
KWD_AI_CALIBRATION	AE_KALIBRIERUNG	IA_CALIBRAZIONE	IA_KALIBRIERING	
KWD_SCRIPT_LAST	SCRIPT_END	SCRIPT_END	SCRIPT_END	

Detailed keyword usage

The following section gives detailed description in the use of each of the keywords, as well as syntax rules and example code. Only the English language of the script is given in detail. The keywords can be substituted by the user selected language if the first keyword of the file is the language selection keyword.

If the script files are in a language other than English, <u>the first line</u> of either <u>script_def.txt</u> if it exists or <u>script_1.txt</u> must contain the <u>language directive keyword</u> or an error will be generated because the keyword's language will be undefined. These language directives keywords are as listed in the following table:

	GB	FR	ES	DE		NL
Language selector	ENGLISH	FRENCH	SPANISH	GERMAN	ITALIAN	DUTCH
Alternate		FRANÇAIS	ESPAÑOL	DEUTSCH	ITALIANO	NEDERLANDS

These keywords besides being in the very first line of the script or definition file, must be alone in the line, no other additional keywords or comments should be on it.

The following is an example to set the script file language to French:

FRENCH
// Must be first word of first line of first file (DEF or SCRIPT)
Also the French keyword version could be used, it can be in capitals or non-capital letters.
Français
// Must be the first word in the first line of the first file (DEF or SCRIPT)

Note that the English version of the database names and keywords will always be available, so when a user writing for example the script in French, he or she can freely mix both languages and use some English and some French keywords as well as database objects names indiscriminately.

On the preceding pages, the keyword list for the different supported languages is shown. Note that accents and other nonstandard characters have been replaced with standard non-accentuated characters to make keyboard input and language translation easy to work with.

All words are case insensitive so the user can write in capital or non-capital or mixed characters. For some keywords and database objects there exist shorthand versions to make script programming easier.

Keyword:	DEFINE
----------	--------

Shortcut:	DEF				
	FR	ES	DE		NL
DEFINE	DEFINIR	DEFINE	DEFINIEREN	DEFINIRE	BEPALEN
DEE	DEE	DEE	DEE	DEE	DEE

The 'DEFINE' or its shortcut 'DEF' keyword defines equates to be able to call data base objects by user defined names:

Syntax: **DEFINE** [DB OBJECT] [optional '=' operator keyword to make reading easier] [NEW LABEL THAT EQUATES TO DB OBJECT BY NAME] 32 bit characters or less.

Underscores are allowed in the label, it is case insensitive

DEFINE	BI_1 ENTRY_DO	R // Standard definition
DEFINE	BI_1 <mark>=</mark> ENTRY_DO	R // Optional '=' added for clarity
DEF	BI_1 ENTRY_DO	R // Short notation
DEF	BI_1 <mark>=</mark> ENTRY_DO	R // Short notation with optional '=' added for clarity

OpenBAS NX database OBJECTS will be the operands or results in the rest of the equations and can be:

Description	Defined as	Notes
Analog inputs	AI_1 to 40	(shared with binary inputs thru universal inputs)
Binary inputs	BI_1 to 40	(shared with analog inputs thru universal inputs)
Analog outputs	AO_1 to 10	
Binary outputs	BO_1 to 60	(41 to 60 are lighting groups)
EEPROM setpoint 32 bits	s ADF_1 to 100	
EEPROM setpoint 16 bits	s ADI_1 to 100	
EEPROM setpoint 8 bits	ADB_1 to 100	
Lighting groups	LG_1 to 20	(remapped to binary outputs 41 to 60)
Result bits registers	RES_BIT_1 to 255	Used to store results of binary (digital) operations
Result float registers	RES_FLT_1 to 40	Used to store results of any other math operations
		(255 with dual core)
System timers	TMR_1 to 16	(32 with dual core)
Remote points	RMT_1 to 50	Wired or wireless operations (255 with dual core)
Integer 8 bit constants	s KBYT_0 to 254	Used as constants for values between 0 and 254
Remote points result re	eg RMT_RES_41 to 255	Used as additional remote points or to store results
		of math operations (with dual core)

A table with a visual representation of the full OpenBAS NX database can be found on the next page.

OpenBAS Building Automation System

		in opend		auti	unus		jeeus	•								
	C	1 25 50) 75	<mark>100</mark>	(125) 	150	175 	200	<mark>225</mark>	<mark>(250</mark>)	275	<mark>300</mark>	<mark>325</mark>	<mark>350</mark>	<mark>375</mark>	<mark>(400</mark>
Hardware I/O	AI BI AO BO ADF 32b ADI 16b	1.40 1.40 1.10 1.40 41.60 1.10 1.10 1.10	0 Uight	ing groups 1-3	20				•							
	ADB 8b	110	10	\equiv												
	PLC							1.400								
	PLC2							1400								
	PLC3							1400								
S	Labels			1200												
EEPR	LCD Lab.	150														
	Alarms	18														
	LOG			1200												
	E-mail	14														
	SMS text	120														
	Light Schd							1400								\Box
	Grl. Sched							1.400								
	Res_bit				1255											
	Res_bit2				1255			1								
5	Res_flt	1.40				41255 51255	5				ĺ	s		Standad	·)	
RAI	TMR	116 1732										nbo		Dual Co	re	
	RMT	150				51.255 51.255	5					Ś		NVRAM		
	Graphics	116	Stored	in USB2 v	ault: RES_	FLT-412	55 + RMT-	51255		<u> </u>						
	~~~~~ )															

#### Table with OpenBAS NX database objects:

As seen on the preceding examples, comments can be added anywhere on any line using the double forward slash characters '//' similar to Visual studio languages such as C, C++, C# etc.

Anything beyond the comment characters will be treated as comments and not processed by the compiler.

Adding comments to your program can help to better understand the logic or sequence of operation, there is no limit on how many lines with instructions or comments a script file can have.

The line length is however restricted to 250 characters, if longer lines are needed or if breaking them to improve readability the backward slash character  $\gamma$  can be used. This way the preprocessor will join lines ending with the  $\gamma$  character before parsing them and extracting the individual tokens. On the next page multiline syntax is shown.



Sample code in a single line of script

IF AI_1 > 17.5 AND AO_1 = 25 OR TEMPERATURE <= ADF_1 + 3 THEN BO_1 = ON ALSO BO_2 = OFF

This is the same code but now using multiple lines using the backward slash character to break the lines to improve readability.

IF AI_1 > 17.5 AND \
AO_1 = 25 OR \
TEMPERATURE <= ADF_1 + 3 \
THEN BO_1 = ON \
ALSO BO_2 = OFF</pre>

Also be aware that as in any written language, spaces or tabs are needed to separate the tokens that make the words, keywords, operators, operands, database objects etc. and make the program readable.

Even while the pre-processor has a token breaker feature so a line such as:

```
AO_1=ADF_1+3
```

will be converted to:

```
AO_1 = ADF_1 + 3
```

It is a good practice to write script programs the same way a standard sentence is constructed by placing spaces between the words that make up the whole sentence.

Also indentation using tabs or spaces is a good programming practice, to make programs more readable to humans, aligning data vertically as nesting goes into the program logic, helps to visually better understand a long program.



#### Keyword: INITIALIZE

	FR	ES	DE		NL
INITIALIZE	INITIALISER	INICIALIZA	INITIALISIEREN	INIZIALIZZARE	INITIALIZE

Once an EEPROM variable name has been created to alias to a database object, and even without being named it can be initialized to a given value, this way when the script is compiled, it's value will be generated and initialized one time when the generated program is downloaded to the controller.

The syntax to initialize an EEPROM database object is a follows:

Syntax:	EEPROM_REGISTER = Value INITIALIZE				
Example:	ADF_1 = 22.5 INITIALIZE	// Any valid 32 bit float value			
	ADI_1 = 1000 INITIALIZE	// Any value from 065535			
	ADI B = 7 INITIALIZE	// Any value from 0255			

If labels are previously created using the DEFINE keyword, these names can be used instead, for example:

Example: DEFINE ADF_1 TEMPERATURE_SET_POINT TEMPERATURE_SET_POINT = 22.5 INITIALIZE // Initialize by name

**Important note:** If the **INITIALIZE** keyword is not used and only a simple assignment is used, the variable will be written all the time. For example in the following expression;  $ADF_1 = 22.5$  will assign the value of 22.5 to the ADF_1 all the time the program is running, so if the user manually adjusts the set point, it will be automatically be re-written with the 22.5 value while the program is being executed. But if the **INITIALIZE** keyword is used as in:  $ADF_1 = 22.5$  **INITIALIZE** then the value will only be assigned when the program is loaded, and then any changes done by the user will not be affected.

There are times under program control that EEPROM values need to be modified. For example in the following example the set point is only adjusted if there is an event, and this is completely acceptable:

// Will set the value od ADF under a certain condition only
Example: IF BI_1 = CLOSED THEN ADF_1 = 25.5

Please note an EEPROM register has a write life time of 1,000,000 cycles and repeatedly changing it under program control will damage the memory cell. In the example above because no damage happens because the OS takes care to only write EEPROM values when the assigned value changes.



#### Keyword: LT_GROUP

	FR	ES	DE		R
LT_GROUP	GROUPE_D_ECLAIRAGE	GRUPO_ILUM	BELEUCHTUNGSGRUPPE	GRUPO_ILUM	LICHTGROEP

The 'LT_GROUP' keyword allows to group up to eight binary outputs into a logical group. Even while the name implies it is used mainly for lighting, it is just an output grouping function, so it can be to turn on simultaneously any kind of load such as motors, valves, lights, etc. The lighting group can be created using the following syntax

Syntax: [RESULT REGISTER] = LT_GROUP [OPERAND_1] .. [optional up to 8 operands]
Example: RES_BIT_1 = LT_GROUP BO_1 BO_2 BO_3 BO_4
// Up to 8 binary outputs can be grouped with into
// a single control bit, up to 20 groups can be created

If labels are previously created using the DEFINE keyword for the binary outputs, these names can be used instead when creating the lighting group, for example:

```
// Use user defined labels instead of database ID's to make line more
// readable
Example: DEFINE RES_BIT_1 = SOURCE_OF_CONTROL
DEFINE BO_1 = NORTH_CORRIDOR
DEFINE BO_2 = SOUTH_CORRIDOR
DEFINE BO_3 = MAIN_ENTRANCE
[LIGHTING_GR_1]
SOURCE_OF_CONTROL = LT_GROUP NORTH_CORRIDOR \
SOUTH_CORRIDOR \
MAIN_ENTRANCE
```

#### <mark>END</mark>

In the above example we can see how the names for the variables were defined in advance, so the lighting group can be created with these names instead. Also to note is that indenting is used and the line where the lighting group is created was broken down to a multiline by using the back slash character.

One thing to note is that a PLC label called [LIGHTING_GR_1] was added before the lighting group lines. This kind of labels is needed when jumps and calls are used in the program to jump to a label or call a subroutine by name. A PLC label is created with the limitation that only the first nine characters will be stored as a PLC label instruction. Even though the label can be up to 32 bytes in size, the same as any custom defined name or tag ID label.



Also note the use of the **END** keyword, any code after the END keyword will not be added to the program. If the END label is not used, the compiler will automatically create one virtual END instruction at the very end of the last used program instruction.

Only subroutines that are explained later in this user guide are allowed to be placed above the last END instruction where the program ends, because they are called from within the main program loop and so if a subroutine is found after an END keyword, it will be included in the program.



Keyword:	END				
Keyword:	JUMP				
Keyword:	CALL				
Keyword:	SUB_BEGIN				
Keyword:	SUB_END				
Keyword:	[X] ((	Custom define	d ID <u>Labels</u> , 1	to 32 characte	ers in size)
GB	FR	ES	DE		NI

GBA	<b>FR</b>	ES	DE		NL
END	FIN	FIN	ENDE	FINE	EINDE
JUMP	SAUT	BRINCA	SPRING	SALTARE	SPRING
CALL	APPEL	LLAMA	ANRUF	CHIAMATA	OPROEP
SUB_BEGIN	SUB_DEMARRER	SUB_INICIO	SUB_BEGIN	SUB_INIZIO	SUB_BEGIN
SUB END	SUB FIN	SUB FIN	SUB ENDE	SUB FINE	SUB EINDE

As shown in the previous example on the last page, the **END** keyword is used to mark the end of the program. Any code after the END keyword will not be added to the program. If the END label is not used, the compiler will automatically create one virtual END instruction at the very end of the last used program instruction.

By using the **JUMP** and **CALL** instructions the END instruction can be skipped under program control to do logic based on the state of the database (I/O's data, schedules etc.).

This is very powerful to allow the program to branch based on the status of the different variables that make up the controller's database.

The 'JUMP' keyword allows for branching of program flow based in process status, it takes the following format:

Syntax:	JUMP [LABEL] (Custom de	fined ID Labels, 1-32 characters in size)
Example:	JUMP <mark>SKIP_1</mark> Some instructions ju	// Unconditional jump
	[ <mark>SKIP_1</mark> ]	// Placeholder label for jump instruction
	Program jumps to the	e SKIP_1 label
	and continues proces	ssing from this point

Another use of the JUMP instruction in conjunction with the **IF** keyword, is to branch the program when a condition is detected.



Example:	IF BI_1	IS OPEN	THEN JUMP	SKIP_2	// Conditional jump
----------	---------	---------	-----------	--------	---------------------

.. Some instructions jumped if BI_1 is open
[SKIP_2] // Placeholder label for jump instruction
.. Program jumps to the SKIP_2 label depending on BI_1 status
and continues processing from this point

In the example program above, the JUMP skips some instructions if the result of the comparison is TRUE, otherwise the instructions marked in red would get executed. More information on the IF keyword will be given later in this chapter.

The 'CALL' keyword allows for branching of program flow based in process status. It differentiates from the jump, that after the "called" subroutine ends, it returns control to the program on the line following the CALL instruction, it takes the following format:

Syntax:	CALL [LABEL] (Custom defined I)	D Labels, 1-32 characters in size)
Example:	CALL SUBROUTINE_PROGRAM After the subroutine ends, the program will continue ends the lines following the CALE END // Program will end here	// Unconditional subroutine call // from main program xecuting L keyword
	SUB_BEGIN [SUBROUTINE_PROGRAM]	// Labels for documentation or
	Subroutine program	// calls or jumps can be easily
		// created using square brackets
	SUB_END	// Program returns control from
		// a subroutine wehen the END_SUB
		// instruction is found

Usually subroutines are located after the END of the main program, so it even makes sense to add them in separate script files (other than script_1.txt) to keep the main program clean and readable.

Remember that at compile time the pre-processor merges all the script files along with the definition file to be able to have full visibility of the program.

One thing to be aware of is that when the SUB_BEGIN keyword is found, the compiler automatically adds an END instruction before the subroutine starts for if the user forgets to do so and avoid unexpected results when the program executes.



Similar to the conditional JUMP, the CALL instruction can be used in conjunction with the **IF** keyword, to branch the program when a condition is detected.

Example:	IF BI_1 IS OPEN THEN CALL SUBR	OUTINE_PRG_2
		// Conditional subroutine call
	after the subroutine ends,	// from main program
	the program will continue e	xecuting
	the lines following the CAL	L keyword
	END // Program will end here	
	SUB_BEGIN [SUBROUTINE_ PRG_2]	// Labels for documentation or
	Subroutine program	// calls or jumps can be easily
		// created using square brackets
	SUB_END	// Program returns control from
		// a subroutine wehen the END_SUB
		// instruction is found

In the example program above, the CALL calls the subroutine if the result of the comparison is TRUE, otherwise the subroutine will not be called at all. More information on the IF keyword will be given later in this chapter.

NOTE: It is important to have in mind that subroutines are not re-entrant, this means a subroutine can't call another subroutine, so basically there exist only two levels of program running at any time:

- The main program loop.
- Subroutine levels.

So every time an END instruction is found is interpreted depending on the context, if the program is in the main loop the program will end, and a new iteration will begin.

If instead the END is found while inside a subroutine, the subroutine will end and yield control to the instruction following the subroutine CALL in the main loop.

Also keep in mind that in processors with dual core that can have three PLC's running simultaneously, each PLC runs isolated and separated from the other PLC's, so they can't call subroutines located in another PLC's.

The only "glue" that ties the PLC's together is the OpenBAS database collection of objects, where information can be passed between them such as values, semaphores, etc



Keywo	ord:	IF

- Keyword: ELSE
- Keyword: THEN

Keyword: ALSO

<b>GB</b>	FR	ES		Ē	NL
IF	SI	SI	OB	NEL_CASO_QUE	ALS
ELSE	AUTRE	CASO_CONTRARIO	SONST	ALTRIMENTI	ANDERS
THEN	PUIS	ENTONCES	DANN	ALORA	DAN
ALSO	AUSSI	TAMBIEN	AUCH	ANCHE	OOK

The '**IF**' keyword uses comparison operators to compare two operands, and sets a result if the expression is TRUE after the THEN keyword, the optional ELSE keyword gets executed instead if the comparison result is FALSE.

The comparison can be simple or nested comparisons can be joined by logical AND or OR keywords, each comparison is evaluated independently and ANDED or ORED with the next as they appear on the line.

Each of the left and right operands can be simple or complex, complex operands can use the:

- MIN/MAX/AVG keyword
- or have simple math such as:  $\frac{MAX}{A} = b \frac{MIN}{A} = \frac{d}{d} = \frac{f'}{a} + \frac{b}{c} + \frac{d'}{a} + \frac{b}{a} = \frac{b}{a}$

After the THEN or ELSE a single assignment can be performed such as a = b or multiple assignments can take place using the ALSO keyword.

There can be two types of IF expressions, UNARY or BINARY:





The difference between the UNARY and the BINARY expressions is that:

- The unary expression, the assignments after the THEN keyword will be executed only if the result of the single or nested comparison is TRUE. If the result is FALSE no assignment will be executed.
- Whereas in the binary expression, the single or multiple assignments after the THEN keyword will be executed only if the result of the comparison(s) is (are) TRUE. And the assignments following the ELSE will be executed only if the result of the comparison(s) is (are) FALSE.

The following examples show some simple and advanced use if this powerful keyword.

Example: IF AI_1 > 22.5 THEN BO_1 = ON

Using the first syntax the binary output 1 is set to ON (= 1) if the value of the analog input 1 is greater than 22.5. Note that the output will not revert if it is less or equal than 22.5, as there is no matching ELSE keyword to do this.

Example: IF AI_1 > 22.5 THEN BO_1 = ON ELSE BO_1 = OFF

Using the second example, the binary output 1 is set to ON (=1) if the value of the analog input 1 is greater than 22.5, otherwise the output will be reset to OFF (=0) by means of the ELSE keyword.

Example:	[IF_COMPLEX_OPERANDS] // Simple Math can be appli	ed to operands
	IF AI_1 * 2 <mark>&gt;</mark> AI_2 + 3	$\backslash$
	THEN AO_1 = 10 ALSO AO_2 = 20 ALSO BO_1 = ON	$\backslash$
	<mark>else</mark> ao_1 = 30 <mark>also</mark> ao_2 = 40 <mark>also</mark> bo_1 = off	
// Also MIN,	MAX and AVG keywords can be used for left or right	operands
Example:	IF <mark>MAX</mark> AI_1 AI_2 AI_3 AI_4 <mark>&gt;</mark> MIN AI_4 AI_5 AI_6	$\backslash$
	THEN $AO_1 = 10$ ALSO $AO_2 = 20$	$\backslash$
	ELSE $AO_1 = 30$ ALSO $AO_2 = 40$	
Example:	[IF_AND_OR_NESTED_EXPRESIONS]	
	IF BI_1 <mark>IS</mark> OPEN AND BI_2 = CLOSED OR BI_3 = CLOSED	OR \
	BI_4 <mark>=</mark> CLOSED AND BI_4 IS NOT OPEN	$\backslash$
	THEN $BO_1 = ON$ ALSO $BO_1 = ON$	$\backslash$
	ELSE BO_1 = OFF ALSO BO_1 = OFF	
Example:	IF BI_1 = OPEN AND BI_2 = CLOSED	$\backslash$
_	THEN BO_1 = ON $\land$	
	$ELSE BO_1 = OFF$	


Example:	[SIMPLE _IF]	
Example:	IF BI_1 = BI_21 THEN BO_1 = ON	
Example:	[TIMER_LOAD_RUN_COMMAND]	
Example:	IF BI_1 <mark>=</mark> OPEN AND BI_2 <mark>=</mark> CLOSED	$\backslash$
	THEN LOAD TMR_1	$\backslash$
	<mark>else run</mark> tmr_1 <mark>also</mark> motor = off	
// using IS // '=' or ' Example:	S and IS NOT instead of the '==' or '!=' (comparison operators) IF BI_1 IS OPEN AND BI_2 IS NOT OPEN THEN BO_1 = ON ELSE BO_1 = OFF	\ \
Example:	IF BI_1 IS = OPEN AND AO_3 IS >= 50	$\setminus$
	THEN BO_1 = ON	$\setminus$
	<mark>else</mark> bo_1 = Off	

Note that AND / OR keywords can be used to create nested expressions, they are evaluated as they are found and there is no precedence. If the standard follow thru precedence is not enough, intermediate variables can be first created with the desired Boolean or math operations and the used in the IF expression such as in the following example:

```
Example: RES_FLT_1 = MIN AI_1 AI_2 AI_3 // Get the maximum value
RES_FLT_1 *= 3 // Multiply by 3
RES_FLT_2 = AVG AI_4 AI_5 AI_6 // Get the average value
RES_FLT_2 += RMT_7 // Add value of remote 7
// Now do the IF expression and evaluate
IF RES_FLT_1 != RES_FLT_2 AND RES_FLT_1 + 5 IS >= RES_FLT_1 \
THEN BO_1 = ON \
ELSE BO_1 = OFF
```

On the next pages are tables with operators, and keywords that can be used with the IF instruction:

	FR	ES	DE		
<	<	<	<	<	<
<=	<=	<=	<=	<=	<=
>	>	>	>	>	>
>=	>=	>=	>=	>=	>=
=	=	=	=	=	=
!=	!=	!=	!=	!=	!=
==	==	==	==	==	==
IS	ETRE	ES	IST	SEI	IS
NOT	NON	NO	NICHT	NO	NIET

### Table with comparison operators:



Note that the IS keyword only helps to make reading easier and is interpreted as an  $\frac{4}{2}$  ASSINMENT or  $\frac{4}{2}$  EQUAL operator.

Take caution however when using it together with the **NOT** keyword as it inverts the logic of the operators, for example in the following examples, both comparison expressions give the same the same results:

Example:
----------

IF	BI_1	= OPEN		THEN	$BO_1 = ON$
IF	BI_1	IS OPE	N	THEN	$BO_1 = ON$
IF	BI_1	<mark>IS =</mark> O	PEN	THEN	$BO_1 = ON$
IF	BI_1	!= CLO	SED	THEN	$BO_1 = ON$
IF	BI_1	IS NOT	CLOSED	THEN	$BO_1 = ON$
IF	BI_1	IS NOT	= CLOSED	THEN	$BO_1 = ON$

Also the following keywords are available and predefined for the user to make the scripts easier to read and understand:

### Table with predefined labels and constants:

GB	FR	ES	DE		Z
ON	ALLUME	ENCENDIDO	EINSCHALT	ACCENDE	AANDOEN
OFF	ETEINDRE	APAGADO	AUSSCHALT	SPENGE	UITDOEN
OPEN	OUVERT	ABIERTO	OFFEN	APERTO	OPEN
CLOSED	FERME	CERRADO	GESCHLOSSEN	CHIUSO	DICHT
TRUE	VRAI	VERDADERO	WAHR	VERO	WAAR
FALSE	FAUX	FALSO	VALS	FALSO	VALS
RUN	COURIR	CORRE	LAUF	CORRERE	LOPEN
LOAD	CHARGER	CARGA	BELAST	CARICARE	LADEN

# Table with math operators:

	FR	ES	DE		NL
+	+	+	+	+	+
-	-	-	-	-	-
*	*	*	*	*	*
/	/	/	/	/	/
MIN	MIN	MIN	MIN	MIN	MIN
MAX	MAX	MAX	MAX	MASSIMO	MAX
AVG	MOYENNE	PROMEDIO	DURCHSCHNITT	MEDIA	GEMIDDELDE
+=	+=	+=	+=	+=	+=
-=	-=	-=	-=	-=	-=
/=	/=	/=	/=	/=	/=
*=	*=	*=	*=	*=	*=

Note that the current implementation of the compiler only has simple math on the right side of the '=' assignment operation, as there is no precedence or parenthesis enforced precedence. That is a task that might be later implemented.



	FR	ES	DE		NL
RUN	COURIR	CORRE	LAUF	CORRERE	LOPEN
LOAD	CHARGER	CARGA	BELAST	CARICARE	LADEN
SET	SET	FIJAR_A_1	SETZEN	SET	SET
RESET	RESET	FIJAR_A_0	ZURUECKSETZEN	RESET	RESET
START	DEMARRER	ARRANQUE	STARTEN	PARTENZA	STARTEN
STOP	ARRETEZ	PARO	STOPPEN	ARRESTO	STOPPEN

### Table with binary controlling operators:

Beside the LOAD/RUN pair used for timers, the SET/RESET and START/STOP pair can be used in the ELSE/THEN sections of the IF keyword to turn binary registers ON/OFF. See the following examples below:

Example:	IF	BI_1	= (	)PEN	THEN	<mark>load</mark>	TMR_1	<mark>ELSE</mark>	<mark>RUN</mark>	TMR_1
	IF	BI_1	IS	OPEN	THEN	<mark>SET</mark>	BO_1	ELSE	<mark>RESET</mark>	BO_1
	IF	BI_1	IS	OPEN	THEN	<mark>START</mark>	BO_1	<mark>ELSE</mark>	<mark>STOP</mark>	BO_1

Note there is no '=' assignment operator between the mentioned keywords and the assigned register, as in this case the destination operand (the one receiving the value) is the right operand, whereas in the normal assignment the destination operand is the left operand.

There is a different use for the SET/RESET and START/STOP keywords that will be explained later in this chapter.

This finishes the IF keyword section. The next keywords described will be some math and Boolean instructions that might become handy when designing programs with large amount of variables and extensive operations are needed.



/

#### Keywords: symbolic math operators

<b>GB</b>	<b>FR</b>	ES	DE		
+	+	+	+	+	+
-	-	-	-	-	-
*	*	*	*	*	*
/	/	/	/	/	/

+

These MATH OPERATOR keywords allow doing simple math using the script compiler such as:

Syntax:	[RESULT RE	GISTER] = [ <mark>O</mark>	PERAND_1 ] MATH_OPERAT(	OR [OPERAND_2]
		Optional up	to 20 operands	
		(10 for mul	tiply and divide)	
Example:	RES_FLT_1	<mark>=</mark> BI_1	<mark>+ -15.3</mark>	
	RES_FLT_2	<mark>=</mark> AI_1	- AI_2	
	A0_1	<mark>=</mark> RES_FLT_1	* RMT_1	
	RMT_1	<mark>=</mark> 22.5	<mark>/</mark> RMT_1	

Complex math or use of parentheses is not supported so complex math sequences should be broken into simple two operand instructions.

However using compound instructions, math is not limited to the simple math operations shown above. The next pages show some usage of advanced math using compound operators.

Also other math operators are given in the two next tables:

#### Keywords: text math operators ADD, SUBSTRACT, MULTIPLY, DIVIDE

<b>GB</b>	FR	ES	DE		NL
ADD	ADDITION	SUMA	ADDITION	AGGIUNGERE	TOEVOEGEN
SUBSTRACT	SOUSTRACTION	RESTA	SUBSTRAKTION	SOTTRAZIONE	AFTREKKEN
MULTIPLY	MULTIPLICATION	MULTIPLICACION	MULTIPLIZIEREN	MOLTIPLICARE	VERMENIGVULDIGEN
DIVIDE	DIVIDE	DIVISION	TEILEN	DIVIDERE	VERDELEN

# Keywords: extra math operators MIN, MAX, AVG

	FR	ES	DE		NL
MIN	MIN	MIN	MIN	MIN	MIN
MAX	MAX	MAX	MAX	MASSIMO	MAX
AVG	MOYENNE	PROMEDIO	DURCHSCHNITT	MEDIA	GEMIDDELDE



// Symbolic math operators and their text counterparts can take up to
// 20 variables or constants to be calculated for addition and subtraction
Example: RES_FLT_1 = + AI_1 AI_2 AI_3 AI_4 AI_5 22.5 17.5 AO_10
RES_FLT_2 = AI_1 AI_2 AI_3 AI_4 AI_5 22.5 17.5 AO_10

RES_FLT_3 = ADD AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7 AI_8

RES_FLT_4 = SUBSTRACT AI_1 AI_2 AI_3 AI_4 AI_5 22.5

// Multiply and divide keywords can take only up to 10 keywords variables and // constants to be be calculated

Example: RES_FLT_1 <mark>= * AI_1 AI_2 AI_3 AI_4 AI_5 AI_6</mark>

RES_FLT_2 = / AI_1 AI_2 AI_3 AI_4 AI_5 AI_6

RES_FLT_3 = MULTIPLY AI_1 AI_2 AI_3 AI_4 AI_5 AI_6

RES_FLT_4 = DIVIDE AI_1 AI_2 AI_3 AI_4 AI_5 AI_6

// When using simple assignment operator `=' For minimum, maximum or average
// keywords of up to 20 variables and constants can be calculated on a single
// line

Example: RES_FLT_1 <mark>= MIN</mark> AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7

RES_FLT_2 = MAX AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7 AI_8

RES_FLT_3 = AVG AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7 AI_8

Keywords: compound math operators += -= *= /=

<b>B</b>	FR	ES	DE		NL
+=	+=	+=	+=	+=	+=
-=	-=	-=	-=	-=	-=
/=	/=	/=	/=	/=	/=
*=	*=	*=	*=	*=	*=

The compound assignment tokens '+=', '-=', '*=', '/=' perform math instructions by; adding, subtracting, multiplying or dividing the left operand with the right operand, and then storing back the result of the operation in the left operand.

When using the compound operands the MIN, MAX and AVG keywords can be used together to obtain the minimum, maximum or average of the operands, and then doing the compound math as can be seen on the examples on the next page.



Simple compound operands can take one or two operands, and optionally a MIN, MAX or AVG keyword with up to each operand.

Syntax:	[RESULT REGISTER] <mark>+=</mark> -= <mark>*=</mark> /= [ <mark>OPERAND_1</mark> ]
Example:	<pre>RES_FLT_1 += 1500.3 // Samples of compound math AO_1 -= AI_2 // with one single operand. RES_FLT_2 *= RMT_1 RMT_1 /= -1.1</pre>
	<pre>// Now some samples of compound math with two operands // and an additional math operator to do some basic math // before doing the compound assignment.</pre>
	RES_FLT_1 += 1500.3 * ADI_1 RES_FLT_2 += RES_FLT_2 - AO_1 RES_FLT_3 -= 1500.3 / ADI_1 RES_FLT_4 *= AO_1 + 25

Up to four operators can be used after the MIN, MAX, AVG keywords to be processed before their result is applied to compound instructions.

// Compound	assignments using the MIN, MAX, AVG can take 1 to 4 parameters
Syntax:	[RESULT REGISTER] <mark>+=</mark> -= <mark>*=</mark> /= MIN [OP_1] [OP_2] [OP_3] [OP_4]
Syntax:	[RESULT REGISTER] <mark>+=</mark> -= <mark>*=</mark> /= MAX [OP_1] [OP_2] [OP_3] [OP_4]
Syntax:	[RESULT REGISTER] <mark>+= -= *= /= AVG</mark> [OP_1] [OP_2] [OP_3] [OP_4]
Example:	RES_FLT_1 <mark>+= MIN AI_1 AI_2</mark>
	RES_FLT_2 <mark>-= max ai_1 ai_2 ai_3 ai_4</mark>
	RES_FLT_3 <mark>*=</mark> AVG AI_1 AI_2 AI_3
	RES_FLT_4 <mark>/=</mark> <mark>AVG</mark> AI_1 AI_2 AI_3 AI_4



Simple assignment operand can take up to twenty operands when combined with the symbolic or text math operator keywords as well as with the MIN, MAX and AVG keywords.

In this case, after the  $\frac{1}{2}$  simple assignment operator a space must be left and then the desired math operator and then up to 20 operands (10 in the case of multiplication and division) each separated with a space or a tab.

// When using simple assignment operator `=' for minimum, maximum or average // keywords of up to 20 variables and constants can be calculated on a single // line

Example:

RES_FLT_1 = MIN AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7 RES_FLT_2 = MAX AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7 AI_8 RES_FLT_3 = AVG AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7 AI_8

// Also symbolic math operators and their text counterparts can take up to
// 20 variables or constants to be calculated for addition and subtraction
Example: RES_FLT_1 = + AI_1 AI_2 AI_3 AI_4 AI_5 22.5 17.5 AO_10

RES_FLT_2 = - AI_1 AI_2 AI_3 AI_4 AI_5 22.5 17.5 AO_10

RES_FLT_3 = ADD AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 AI_7 AI_8

RES_FLT_4 <mark>= SUBSTRACT</mark> AI_1 AI_2 AI_3 AI_4 AI_5 22.5

// Multiply and divide keywords can take only up to 10 keywords variables and // constants to be be calculated

Example: RES_FLT_1 = * AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 RES_FLT_2 = / AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 RES_FLT_3 = MULTIPLY AI_1 AI_2 AI_3 AI_4 AI_5 AI_6 RES_FLT_4 = DIVIDE AI_1 AI_2 AI_3 AI_4 AI_5 AI_6



Keyword:	AND	Keyword:	XOR
Keyword:	NAND	Keyword:	NXOR
Keyword:	OR	Keyword:	INVERT
Keyword:	NOR	Keyword:	AND_OR
		Keyword:	ANO_OR_INVERTED

B	FR	ES	DE	Ē	NL
AND	ET	Y	UND	E	EN
NAND	ET_INVERSE	Y_NEGADO	UND_UMDREHT	E_ROVESCIATO	EN_OMZETTEND
OR	OU	0	ODER	0	OF
NOR	OU_INVERSE	O_NEGADO	ODER_UMDREHT	O_ROVESCIATO	OF_OMZETTEND
XOR	XOR	O_EXCLUSIVO	ODER_EXCLUSIF	O_EXCLUSIVO	OZ_EXCLUSIEF
NXOR	XOR_INVERSE	O_EXCLUSIVO_NEGADO	ODER_EXCLUSIF_UMDREHT	O_EXCLUSIVO_ROVESCIATO	OZ_EXCLUSIEF_OMZETTEND
INVERT	INVERSER	INVERTIR	UMDREHT	ROVESCIATO	OMZETTEND
AND_OR	ET_OU	Y_0	UND_ODER	E_O	EN_OF
AND_NOR	ET_OU_INVERSE	Y_O_NEGADO	UND_ODER_UMDREHT	E_O_ROVESCIATO	EN_OF_OMZETTEND

No PLC or controller would be complete without a good and powerful set of Boolean logic, so this section covers the Boolean instruction capabilities of the script compiler.

Remember that even when a different language can be selected for the compiler, the English keywords which are the native script language will always be available. This is noted as many programmers working with Boolean logic still prefer to use the Standard English keyword as this is what most schools in many countries use.

```
Boolean equations can be created using the following syntax:
Syntax:
            [RESULT REGISTER] = AND [OPERAND 1] [OPERAND 2] ...
                        Optional up to 20 operands can follow
            [RESULT REGISTER] = NAND [OPERAND 1] [OPERAND 2] ...
Syntax:
                        Optional up to 20 operands can follow
            [RESULT REGISTER] = <mark>OR</mark>
Syntax:
                                      [OPERAND_1] [OPERAND_2] ..
                        Optional up to 20 operands can follow
            [RESULT REGISTER] = NOR [OPERAND_1] [OPERAND_2] ...
Syntax:
                        Optional up to 20 operands can follow
Syntax:
            [RESULT REGISTER] = XOR [OPERAND_1] [OPERAND_2]
            [RESULT REGISTER] = NXOR [OPERAND_1] [OPERAND_2]
Syntax:
Syntax:
            [RESULT REGISTER] = INVERT [OPERAND_1]
```



These last two compound Boolean instructions as well as the SET/RESET and START/STOP with EMERGENCY STOP and HYSTERESIS instructions were added to the PLC on version **2.68**. Therefore to use the script compiler it will be required to upgrade the firmware of the controller before using the compiler and the **eZ HVAC App wizard** if the version loaded in it is less than 2.68

Syntax:	[RESU	LT REG	ISTER	] = .	AND_	OR	[ OP [ OP	ER ER	AND_1 AND_3	] [OP ] [OP	ERAN	ND_2] ND_4]	\		
Syntax:	[RESU	LT REG	ISTER	] =	AND_	NOR	[ OP [ OP	ERI ERI	AND_1 AND_3	] [OF ] [OF	ERAI	ND_2] ND_4]	\		
Examples:															
// Up t	o 20 op	erands	allo	ved	for	these	Воо	lea	an in	struc	tior	ıs			
BO_1 =	<mark>AND</mark>	BI_1	BI_2 I	3I_3	BI_	4 BI_	5 BI	_б	BI_7	BI_8	BI_	_9 BI	_10		
BO_1 =	AND	BI_1	BI_2 I	3I_3	BI_	4 BI_	5 BI	_6	BI_7	BI_8					
BO_1 =	<mark>AND</mark>	BI_1	BI_2 I	3I_3	BI_	4 BI_	5 BI	_6	BI_7						
BO_1 =	<mark>AND</mark>	BI_1	BI_2 H	3I_3	BI_	4									
BO_1 =	AND	BI_1	BI_2 H	3I_3											
BO_2 =	NAND	BI_1	BI_2 H	3I_3	BI_	4 BI_	5 BI	_6	BI_7	BI_8	BI_	_9 BI	_10		
BO_3 =	OR	BI_1	BI_2 B	3I_3	BI_	4 BI_	5 BI	<u> </u> 6	BI_7	BI_8	BI_	_9 BI	_10		
BO_4 =	<mark>NOR</mark>	BI_1	BI_2 H	3I_3	BI_	4 BI_	5 BI	_6	BI_7	BI_8	BI_	_9 BI	_10		
RES_BIT BO_1 = RES_BIT AO_1_1	2_1 = 2_1 = =	INVER INVER INVER INVER	T T T	BI BI 0 1.	_1 _1 1										
// XOR	/ NXOR ]	keywor <mark>¤</mark>	ds tal	ce t	wo o	peran	ds o	nly	<i>!</i>						
$RES_BII$	<u>x0</u> .		BT 1	BT_	2										
RES BIT	10		BT 1	BT_	2										
BO_1 =	NX	OR	BI_1	BI_	2										
// Comp // Unus	ound AN	D-OR k s can	eyword be set	ls t to	ake : 1	alway	s fo	ur	oper	ands,					
RES_BIT	<u>_1 = AN</u>	D_OR	BI_1	BI_	2 BI	_3 BI	_4								
BO_1 =	AN	D_OR	BI_1	BI_	2 BI	_3 BI	_4								
RES_BIT	1 = AN	D_NOR	BI_1	BI_	2 BI	_3 BI	_4								
BO_1 =	AN	D_NOR	BI_1	BI_	2	1 BI	_4 /	/ (	Jnuse	d AND	ter	rm is	set	to	<u>"1</u> "

Remember that always user defined labels with the DEFINE keyword can be used instead of the database object names to make the syntax of the sentences more clear.



Keyword:	SET	Keyword:	HYSTERESIS
Keyword:	RESET	Keyword:	START
Keyword:	INSIDE	Keyword:	STOP
Keyword:	OUTSIDE	Keyword:	EMERG_STOP

<b>C</b> B	FR	ES	DE		
SET	SET	FIJAR_A_1	SETZEN	SET	SET
RESET	RESET	FIJAR_A_0	ZURUECKSETZEN	RESET	RESET
START	DEMARRER	ARRANQUE	STARTEN	PARTENZA	STARTEN
STOP	ARRETEZ	PARO	STOPPEN	ARRESTO	STOPPEN
EMRG_STOP	ARRET_D_URGENCE	PARO_EMERG	NOT_HALT	ARRESTO_EMERG	NOODSTOP
INSIDE	INTERIEUR	DENTRO_DE	INNEN	DENTRO	BINNEN
OUTSIDE	EXTERIEUR	FUERA_DE	AUSSEN	FUORI	BUITEN
HYSTERESIS	HYSTERESE	HISTERESIS	HYSTERESE	ISTERESI	HYSTERESIS

The 'SET/RESET' command can be used to set or reset any binary register or output data base object. The 'START/STOP/EMRG_STOP' keywords can be used to set a start / stop circuit with emergency stop using the following syntax:

Syntax:	[RESULT REGISTER]	=	<mark>SET</mark>	[OPERAND_1]	$\setminus$
			RESET	[OPERAND_2]	
Syntax:	[RESULT REGISTER]	=	START	[OPERAND_1]	$\backslash$
			STOP	[OPERAND_2]	$\setminus$
			EMRG_STOP	[OPERAND_3]	
// Start a Example:	nd Stop circuit emu BO_2 = <mark>START</mark>	lator v <mark>BI_1</mark>	vith emerger <mark>STOP</mark> <mark>BI_2</mark>	ncy stop <mark>EMRG_STOP</mark> BI_	3
// Simple	hysteresis expressio	on for	HVAC can be	e performed	
// with SE	T-RESET equations				
Example:	BO 1 = SET	BI 1	RESET BI 2		

The 'INSIDE/OUTSIDE/HYSTERESIS' keywords can be to test if a process variable is inside or outside a given range. The INSIDE keyword is similar to a dual comparison such as if LOW < PV < HIGH so if the value of PV is <u>'inside'</u> the low and high limits the result will be TRUE. The OUTSIDE keyword is similar to a dual comparison such as if LOW > PV > HIGH, so if the value of PV is <u>'outside'</u> the low and high limits the result will be TRUE. The INVERT keyword at the end will invert the result of the comparison.

The 'INSIDE/OUTSIDE/HYSTERESIS' keywords can be to test if a process variable is inside or outside a given range using the following syntax:



The HYSTERESIS keyword is similar but checks only the crossing of the minimum and maximum thresholds, so for example will set the output to TRUE when the PV crosses the maximum level and will only return to FALSE after the PV goes down and crosses the minimum set point, this is very useful for HVAC applications to provide a dead band and avoid cycling

The difference between using standard nested IF keywords against these instructions, is code saving, as IF instructions might take as much as six to ten instructions to do the comparisons and the respective jumps to skip the output codes. These instructions do the job using a single instruction.

```
[RESULT REGISTER] = INSIDE
                                           [DATA BASE OBJECT FOR MIN]
Syntax:
                                                                         /
                                           [DATA BASE OBJECT FOR MAX]
                                                                         /
                                           [DATA BASE OBJECT FOR PV]
                                                                         /
                                           [Optional INVERT keyword]
Syntax:
            [RESULT REGISTER] = OUTSIDE
                                           [DATA BASE OBJECT FOR MIN]
                                                                         \
                                           DATA BASE OBJECT FOR MAX
                                                                         \
                                           [DATA BASE OBJECT FOR PV]
                                                                         \
                                           [Optional INVERT keyword]
            [RESULT REGISTER] = HYSTERESIS [DATA BASE OBJECT FOR MIN]
Syntax:
                                                                         /
                                           [DATA BASE OBJECT FOR MAX]
                                                                         \
                                           [DATA BASE OBJECT FOR PV]
// Output BO_1 will be TRUE if AI_1 > ADF_1 and AI_1 < ADF_2 (normal logic)
            BO_1 = INSIDE ADF_1 ADF_2 AI_1
Example:
// Output BO_1 will be FALSE if AI_1 < ADF_1 or AI_1 > ADF_2 (inverted logic)
            BO_2 = INSIDE ADF_1 ADF_2 AI_1 INVERT
Example:
// Output BO_1 will be TRUE if AI_1 < ADF_1 or AI_1 > ADF_2 (normal logic)
            BO_1 = OUTSIDE ADF_1 ADF_2 AI_1
Example:
// Output BO_1 will be FALSE if AI_1 > ADF_1 and AI_1 < ADF_2
// (inverted logic)
            BO_1 = OUTSIDE ADF_1 ADF_2 AI_1 INVERT
Example:
// Output BO_1 will be TRUE the moment AI_1 > ADF_2 and will remain so
// until AI_1 < ADF_1 at which point will be FALSE</pre>
          BO_1 = HYSTERESIS ADF_1 ADF_2 AI_1
Example:
```

The HYSTERESYS does not have an inverted output logic incorporated in the instruction, if needed it should be inverted after the instruction is evaluated HYSTERESIS with an INVERT keyword.



### Keyword: SCHEDULE

GB	FR	ES	DE		NL
SCHEDULE	CALENDRIER	HORARIO	ZEITPLAN	ORARIO	DIENSTREGELING
ON	ALLUME	ENCENDIDO	EINSCHALT	ACCENDE	AANDOEN
OFF	ETEINDRE	APAGADO	AUSSCHALT	SPENGE	UITDOEN
PERIOD	PERIODE	PERIODO	PERIODE	PERIODO	PERIODE
DAY	JOUR	DIA	TAG	GIORNO	DAG
WEEK	SEMAINE	SEMANA	WOCHE	SETTIMANA	WEEK
MONTH	MOIS	MES	MONAT	MESE	MAAND

The OpenBAS NX controllers feature a real time clock and can handle up to 400 different schedules. With the SCHEDULE keyword weekly or specific date schedules can be created.

Different type of schedules can be created:

- Turn ON
- Turn OFF
- Turn On and Off at specific times
- Maintain On inside a specific period
- Set a value based on a schedule.

### Weekly schedules

Weekly schedules can be created using a week day flag to make them active on any day from Monday to Sunday and including holidays using the following syntax.

Syntax:	[RESULT REGISTER] = <mark>SCHEDULE</mark> [WEEK]
	{Week day flags 7 days + holiday in the form [MTWTFSSH] $\setminus$
	not used days should be '-'}
	[ON or OFF] \
	[time 00:00 to 23:59]
Syntax:	[RESULT REGISTER] = SCHEDULE [WEEK]
	{Week day flags 7 days + holiday in the form [MTWTFSSH] $\setminus$
	not used days should be '-' $\}$
	[ <mark>ON</mark> ] [time 00:00 to 23:59] \
	[ <mark>OFF</mark> ] [time 00:00 to 23:59] \
	[ <b>PERIOD</b> is optional to force during period to on]
Syntax:	[RESULT REGISTER] = SCHEDULE [WEEK]
	{Week day flags 7 days + holiday in the form [MTWTFSSH] $\setminus$
	not used days should be '-'}
	[VALUE] [Scheduled commanded value or set point] $\land$
	[time 00:00 to 23:59]



## Specific date schedules

Specific date schedules use a day / month information to operate on that specific day of the year.

Syntax: [RESULT REGISTER] = SCHEDULE [DAY] [Day of month]  $\backslash$ [MONTH] [month of year] \ [ON or OFF] [time 00:00 to 23:59] Syntax: [RESULT REGISTER] = SCHEDULE [DAY] [Day of month]  $\backslash$ [MONTH] [month of year] / [ <mark>ON</mark> ] [time 00:00 to 23:59]  $\backslash$ [time 00:00 to 23:59] [<mark>OFF</mark>] / [PERIOD is optional to force during period to on] // Outputs or bit registers can be commanded by schedule BO_1 = SCHEDULE WEEK {MTWTF---} ON {8:00} Example: BO_1 = SCHEDULE WEEK {MTWTF---} OFF {17:45} // A schedule with ON and OFF times can be also set Example: BO_1 = SCHEDULE WEEK {MTWTF---} ON {8:00} OFF {18:30} // Or a period of time during which the output will be commanded to ON Example: BO_1 = SCHEDULE WEEK {MTWTFS--} ON {8:00} OFF {18:30} PERIOD // Also set points and values can be changed at a given time to pre-set value Example: ADF_1 = SCHEDULE WEEK {MTWTF--H} VALUE 30 {15:00} // Specific dates can be created instead of weekly schedules ON {15:00} BO_1 = SCHEDULE DAY 30 MONTH 1 Example: BO_1 = SCHEDULE DAY 30 MONTH **OFF** {22:15} 1 // Specific dates can be created instead of weekly schedules Example: BO_1 = SCHEDULE DAY 30 MONTH 1 ON {15:00} OFF {18:30} // Specific dates can be created instead of weekly schedules Example: BO_1 = SCHEDULE DAY 30 MONTH 1 ON {15:00} OFF {18:30} PERIOD // Specific dates can be created instead of weekly schedules Example: ADF_1 = SCHEDULE DAY 30 MONTH 1 VALUE 22.5 {15:00}



____

Keyword:	TIMER				
Keyword:	OSCILATOR				
Keyword:	FREQUENCY				
<b>GB</b>	FR	ES	DE		NL
TIMER	MINUTEUR	TEMPORIZADOR	TIMER	TIMER	TIMER
OSCILATOR	OSCILLATEUR	OSCILADOR	OSZILLATOR	OSCILLATORE	OSCILLATOR
FREQUENCY	FREQUENCE	FRECUENCIA	FREQUENZ	FREQUENZA	FREQUENTIE
SECONDS	SECONDES	SEGUNDOS	SEKUNDEN	SECONDI	SECONDS
SEC 1 10	SEC 1 10	SEG 1 10	SEK 1 10	SEC 1 10	SEC 1 10

The 'TIMER' keyword is used to configure a timer's operation mode, each controller has sixteen system timers that can be configured as:

- Second down counter
- 1/10 of second down counter
- Oscillator with pulse output
- Frequency converter with pulse output

The timers can be used alone or in conjunction with special purpose instructions for HVAC applications to synchronize events, the following examples will explain how to set them up.

```
// The result register is the timer status down counter timer
            [RESULT REGISTER] = TIMER [timer number 1 to 16]
Syntax:
                  [ADI 1..100] [reload value] [SECONDS or SEC 1 10]
// Outputs the oscillator period to the binary result register
           [RESULT REGISTER] = TIMER [timer number 1 to 16]
Syntax:
                  [OSCILATOR] [OPERAND_1 to convert to a period]
// Outputs the frequency to the the binary result register
           [RESULT REGISTER] = TIMER [timer number 1 to 16]
Syntax:
                  [FREQUENCY] [OPERAND_1 to convert to frequency]
// Prepare timer reload value and set default value into ADI reload register
// SECONDS or SEC 1 10 flag can be used
Example:
           TMR_1 = TIMER 1 ADI_1 5 SECONDS
// A binary output or result bit can be made to toggle at a given frequency
Example: BO_1 = TIMER 1 OSCILATOR 5
// Or instead oscillate at a fixed or variable rate
          BO_1 = TIMER 1 OSCILATOR AI_1
Example:
// A frequency (1/OSCILATOR) can also be used.
Example: RES_BIT_1 = TIMER 1 FREQUENCY AI_1
```



# Keyword: TOTALIZE

	FR	ES	DE		NL
TOTALIZE	TOTALISATEUR	TOTALIZADOR	ZAEHLER	TOTALIZZATORE	TOTALIZATOR
PV	VP	VP	ISTWERT	VP	PV
ON_CHANGE	SUR_LE_CHANGEMENT	AL_CAMBIAR	BEI_AENDERUNG	SUL_CAMBIAMENTO	OP_VERANDERING
LAST_PERIOD	DERNIERE_PERIODE	ULTIMO_PERIODO	LETZTE_PERIODE	ULTIMO_PERIODO	LAATSTE_PERIODE
PARTIAL_KW	PARTIELLE_KW	PARCIAL_KW	PARTIELL_KW	PARZIALE_KW	PARTIEEL_KW
PARTIAL_ACC	PARTIELLE_ACCUM	PARCIAL_ACUM	PARTIELL_AKKUMULIERT	PARZIALE_ACUMULATO	PARTIEEL_GEACCUMULEERDE
SAMPLE COUNT	NUMERO ECHANTILLON	NUMERO MUESTRAS	PROBENZAFHLUNG	CONTEGGIO CAMPIONI	MONSTER TELLER

Totalizers can also be called counters, as they keep count of events or quantities; they are used for many different purposes such as:

- The number of times a motor started, or stopped or both
- The number of times a door or window was opened, closed or both.
- The number of people entering or exiting a building, or both.
- The amount of liters used when using a pulsed water flow meter.
- The amount of gas or energy used when using pulsed gas or energy meters.
- Adding a period can convert the previous readings into for example liters per minute, cubic feet per hour, kilowatts hour, etc.
- Also analog signals can be used for example to convert current or watts to energy readings and store KVAh or KWh.

Setting up a totalizer is straightforward, and takes the following forms:

Syntax:	EEPROM REGISTER	updated every 5 minutes] = <mark>TOTALIZE</mark>
	PV	= [OPERAND_1 process variable]
	ON_CHANGE	= [change to 0, change to 1, 2 = any change]
	PARTIAL_ACC	= [OPERAND_2 5 minute partial accumulated value]
Syntax:	[RESULT REGISTER]	= TOTALIZE
	PV	= [OPERAND_1 process variable]
	ON_CHANGE	= [change to 0, change to 1, 2 = any change]
	LAST_PERIOD	= [OPERAND_2 to store last period]
	MIN	<pre>= [totalisation period 1,5,10,20,30,60 minutes]</pre>
Syntax:	[EEPROM REGISTER	updated KWH every 10 minutes] = TOTALIZE
	PV	= [OPERAND_1 process variable]
	PARTIAL_KW	= [OPERAND_2 partial sum of 10 min accum. KWh]
	SAMPLE_COUNT	<pre>= [OPERAND_3 nr. of samples per 10 min. period]</pre>

The only limit on the amount of totalizers is the number of registers available to store the totalized counters.



On the first example, an EEPROM register will be updated every 5 minutes with the partial accumulated count that is stored in RAM, this is done because EEPROM's have a limited number of write cycles (1,000,000) and stressing it beyond that point will damage the memory cell.

On this next example a periodic count is kept in a pair of registers, rge result register keeps track of the total count of the current period and the last period register stores the last period.

So for example if we were measuring water and the period is set to 60 minutes, the result register will have the count of liters of the current hour and will be incrementing the counter every time a pulse that represents a certain amount of water is received. Meanwhile the last period will keep the record of liters used during the previous hour.

When the time period expires, the current period counter is reset to zero after having copied its current value to the last period register to start a new count.



The last example is totalizator for energy; it's input is an analog value that can be a current sensor that is multiplied by voltage to get VA (Volt-Amps) and optionally also multiplied by the power factor to get Watts. This value is sampled and a partial KW count is updated several times per second and the number of samples for the minute period is also stored.

At the end of each 10 minute period, the totalized energy which is stored in an EEPROM register is incremented by the energy stored in the 10 minute partial register and stored back. The 10 minute energy register as well as the sample counter are then reset to zero to start a new count



### Keyword: HOUR_COUNTER

<b>CB</b>	FR	ES	DE		NL
HOUR_COUNTER	COMPTEUR_D_HEURES	HOROMETRO	STUNDEN_ZAEHLER	CONTAORE	URENTELLER
PV	VP	VP	ISTWERT	VP	PV
PARTIAL_COUNT	COMPTE_PARTIEL	CUENTA_PARCIAL	TEILZAEHLUNG	CONTEGGIO_PARZIALE	GEDEELTELIJKE_TELLING
EEPROM	EEPROM	EEPROM	EEPROM	EEPROM	EEPROM

Hour counters keep track of time of operation of any given controlled device, such as a pump, an air handler unit, time a door or window is open or closed, or the time a light is on or a temperature is in alarm etc.

Later this time count can be used to trigger alarms or sequences based on hours of operation such as:

- Changing to alternate equipment to balance the hours of operation in machinery arrays.
- Issuing maintenance alarms.
- Warning that a filter needs to be replaced.
- Etc.

Setting up a counter is relatively easy, when the process variable is TRUE, the count is incremented, and otherwise it sits still. As with the totalizers, because the hours of operation is stored in EEPROM and it has a write life time of 1,000,000 cycles, a partial count is kept in a RAM based partial count, and the contents of the EEPROM are updated every 5 minutes with the most recent hour count.

The hour counter takes the following format:

The only limit on the amount of counters is the number of registers available to store the hour count.



# Keyword: PROP_CTRL

<b>CB</b>	FR	ES	DE		NL
PROP_CTRL	CONTROLE_PROPORTIONNEL	CONTROL_PROP	PROP_BEDIENUNG	CONTROLLO_PROP	PROP_BEDIENING
PV	VP	VP	ISTWERT	VP	PV
SP	CONSIGNE	P_AJ	SOLLWERT	SP	SETPUNT
PB	B_PROP	B_PROP	PB	B_PROP	PB
MIN	MIN	MIN	MIN	MIN	MIN
MAX	MAX	MAX	MAX	MASSIMO	MAX
INTEG	INTEG	INTEG	INTEG	INTEG	INTEG
EEPROM	EEPROM	EEPROM	EEPROM	EEPROM	EEPROM

Proportional control instructions are used to modulate machinery that can vary a process such as:

- Variable frequency drives (VFD's).
- Dimmable lighting ballasts.
- Proportional water valves for heating and cooling coils.
- Damper actuators with proportional positioning, for HVAC applications.
- Etc.

The output of a proportional control will swing from 0-100% and it can be output to analog outputs for direct control of the above mentioned devices, or sent via communication channels to command VFD's, dampers and actuators for example via Optomux, N2-Open, Modbus or BACnet.

The proportional control with minimum, maximum and integration has the following format:

Syntax:	[RESULT	REGISTER]	=	<mark>PROP_CTRL</mark>	
		<mark>PV</mark>	=	[Process var	iable]
		<mark>EEPROM</mark>	=	[Index to EE	<b>PROM</b> storage, ADF or ADI or ADB]
		SP	=	[OPERAND_1]	set point]
		<mark>PB</mark>	=	[OPERAND_2]	proportional band
		MIN	=	[OPERAND_3]	minimum output range
		MAX	=	[OPERAND_4]	maximum output range
		INTEG	=	[OPERAND_5]	integration time (ramp)
// Proportion // created on // keywords a Example: AO_	nal contr n a singl and value _1 = PRC PV EEP SP PB MIN MAX INT	Cols to pos e line, he s is shown P_CTRL = AI_1 ROM = ADF_ = 22.5 = 1.5 [ = 10 : = 90 EG = 10	sit ere l l	tion dampers, the syntax \ \ \ \ \ \ \	valves or speed of VFD´s can be with the <mark>`='</mark> operator between



//	Also	the	line	са	in be	writt	en wi	ithout	the	' = '	operator
Ex	ample:	:	AO_1	=	PROP_	_CTRL			$\setminus$		
					PV		AI_1	Ĺ	$\backslash$		
					EEPR(	<mark>MC</mark>	ADF_	_1	$\setminus$		
					SP 💦		22.5	5	$\backslash$		
					PB		1.5		$\backslash$		
					MIN		10		$\setminus$		
					MAX		90		$\backslash$		
					INTE(	<mark>5</mark>	10				

// Even a very simple line can also be created using only the operands
// Each parameter's position is assumed to be in the before mentioned order
Example: AO_1 = PROP_CTRL AI_1 ADF_1 22.5 1.5 10 90 10

The only limit on the proportional control instructions is the number of registers available to store the variables and set points.

Note that the result register for this instruction can only be analog outputs or REF_FLT registers. For example the output of the proportional control will be sent to a remote point to do control over a field bus protocol, after the proportional control instruction, a write to the remote point has to be issued separately. This is shown on the following example.

More information on setting up remote points using the RMT keyword as well as configuring field buses with the COMM keyword to operate as either slaves or masters is given their corresponding sections on this user's guide.



# Keyword: HVAC_STAGE

<b>CB</b>	FR	ES	DE	1	NL
HVAC_STAGE	ETAPE_HVAC	ETAPA_HVAC	HVAC_STUFE	STADIO_HVAC	HVAC_ETAPPE
COOLING	REFROIDISSEMENT	ENFRIAMIENTO	KUEHLUNG	REFFREDDAMENTO	KOELING
HEATING	CHAUFFAGE	CALEFACCION	HEIZUNG	RISCALDAMENTO	VERWARMING
SP	CONSIGNE	P_AJ	SOLLWERT	SP	SETPUNT
PB	B_PROP	B_PROP	PB	B_PROP	PB
PV	VP	VP	ISTWERT	VP	PV
STAGE_RUN	VALIDACION_ETAPE	PERMISIVO_ETAPA	STUFE_LAUF	STADIO_FUNZIONARE	ETAPPE_LOPEN
TMR_MINIMUM_ON	TMR_MIN_ALLUMER	TMR_MINIMO_ENC	TMR_MIN_EIN	TMR_MIN_ACCENDERE	TMR_MIN_IN
TMR_MINIMUM_OFF	TMR_MIN_ARRET	TMR_MINIMO_APAG	TMR_MIN_AUS	TMR_MIN_SPEGNERE	TMR_MIN_UIT
TMR INTERSTAGE	TMR INTERETAPES	TMR INTERETAPAS	TMR ZWISCHENSTUFE	TMR INTERSTADIO	TMR INTERSTAGE

Powerful yet simple HVAC control sequences can be built using this application specific HVAC_STAGE instruction. In the programmer manual for the OpenBAS NX controllers some additional information and examples are given to fully implement air handler units control sequences. The **eZ App wizard** goes a step further by fully automating the build process for simple to complicated air handling units.

The HVAC stage takes the following format:

Syntax:	[RESULT	REGISTER]	= HVAC_	_STA	. <mark>GE</mark>				
	[ (	<mark>COOLING</mark> or	HEATIN(	<mark>3</mark> fl	ag]				
	El	<mark>EPROM</mark>	[Index	to	EEPROM	storage,	ADF or	ADI or	ADB]
	<mark>S</mark> I	P			[OPEF	RAND_1]			
	<mark>P</mark> ]	B			[OPEF	RAND_2]			
	P	V			[OPEF	RAND_3]			
	S.	TAGE_RUN			[OPEF	RAND_4]			
	TI	MR_MINIMUM_	_ON_SEC		[OPEF	RAND_5] *	*option	al	
	TI	MR_MINIMUM_	OFF_SE	C	[OPEF	RAND_6] *	*option	al	
	TI	MR_INTERSTA	AGE		[OPEF	RAND_7] *	*option	al	
// Timers a	re inclu	ded for: m:	inimum (	On t	ime, mi	Lnimum Of	f time		
// as well a	as inter	-stage, the	e timers	s ha	ve to k	pe indepe	ndently	[,] create	d
// using the	e TIMER ]	keywords							
Example:	BO_1 = 1	HVAC_STAGE	C	COOL	ING	$\backslash$			
	El	<mark>EPROM</mark>	:	= <mark>AD</mark>	F_1	$\setminus$			
	P	V	=	= <mark>AI</mark>	_1	$\setminus$			
	<mark>S</mark> I	P	-	= 22	. 5	$\setminus$			
	Pl	B	:	= 2		$\setminus$			
	S.	TAGE_RUN	=	= BI	_1	$\backslash$			

=

=

=

TMR 1

TMR 1

TMR_3

/

\

TMR_MINIMUM_ON

TMR_MINIMUM_OFF

TMR_INTERSTAGE



// Simple Stage Control	
Example: BO_2 = HVAC_STAGE HEATING	<del>,</del> \
PV = AI_1	$\setminus$
$\frac{SP}{22.5}$	$\setminus$
PB = 2	$\setminus$
STAGE_RUN = BI_1	$\setminus$
EEPROM = ADF_7	

Air handling units are very diverse mechanically and in operation sequence. This stage instruction can be linked together to make any control no matter how complex it is.

Basically you provide the stage with the following information so it can perform its job:

- A binary result register that will be turned On/Off as needed
- Information weather the stage is intended for Heating or Cooling. This can be changed at run time
- A process variable that is the feedback to control the result register output based on the set point and proportional band, that in this case is used as a differential to provide hysteresis as to when the stage has to be On or Off.
- A stage run signal, that usually comes from a Boolean AND instruction and has all the chained information to let the stage run such as: emergency stop, low pressure cut off, high pressure cut off, water flow present, manual, scheduled or remote start command.
- There are two timers that can optionally set a minimum ON and minimum OFF time, this is very important when driving compressors, motors and other load that are sensitive to frequent start and stop cycles.
- An inter-stage timer that links together multiple stages, so not all of them start simultaneously.

The **eZ App wizard** generates tested solutions that can be further personalized to suit any kind of simple to complex solutions.

The HVAC stage instruction is not limited only to air handler applications, as the operands are generic and can control any variable such as: pressure, current, energy, water or gas flow, etc.



## Keyword: ALTERNATE

<b>CB</b>	FR	ES	DE		NL
ALTERNATE	ALTERNER	ALTERNADO	ALTERNIEREN	ALTERNATO	AFWISSELEN
PV	VP	VP	ISTWERT	VP	PV
SP	CONSIGNE	P_AJ	SOLLWERT	SP	SETPUNT
PB	B_PROP	B_PROP	PB	B_PROP	PB
EEPROM	EEPROM	EEPROM	EEPROM	EEPROM	EEPROM
ALT_OUTPUT	ALT_SORTIE	ALT_SALIDA	ALT_AUSGANG	ALT_USCITA	ALT_UITGANG
ALT_STAGES	ALT_ETAPES	ALT_ETAPAS	ALT_STUFEN	ALT_STADIO	ALT_ETAPPE
ALT_LEADER	ALT_LEADER	ALT_LIDER	ALT_FUHRER	ALT_DIRETTORE	ALT_AANVOERDER
ALT_DEC_INC	ALT_DEC_INC	ALT_DEC_INC	ALT_DEC_INC	ALT_DEC_INC	ALT_DEC_INC
ALT_TMR_NEXT_STAGE	ALT_TM_SUIV_ETAPE	ALT_TM_SIG_ETAPA	ALT_NACHSTE_STUFE	ALT_PROSSIMO_STADIO	ALT_VOLGENDE_ETAPPE
ALT_TMR_ALARM	ALT_TM_ALARME	ALT_TM_ALARMA	ALT_TMR_ALARM	ALT_TMR_ALLARME	ALT_TMR_ALARM
ALT_EXT_ENABLE	ALT_ACTIV_EXT	ALT_HABIL_EXT	ALT_EXT_FREIGABE	ALT_ABILITAZIONE_EST	ALT_EXT_SCHAKELEN
ALT_FEEDBACK	ALT_RETOUR	ALT_RETROALIM	ALT_RUCKKOPPLUNG	ALT_RISPOSTA	ALT_TERGUGKOPPELING
ALT_PARALLEL	ALT_PARALLELE	ALT_SIMULTANEO	ALT_PARALLEL	ALT_PARALLELO	ALT_PARALLEL

The ALTERNATE instruction is a simple but yet powerful instruction that can works by alternating machinery such as: pumps, ventilators, chillers, boilers, AHU's etc.

It is used to balance operation of the before mentioned equipment, but not also alternates but can also be programmed to parallel operation, so if the first stage can't cope with the load, such as in pump applications, a second, third and up to eight stages can be paralleled if necessary.

It has advanced features such as:

- Stage feedback to look for not operating stages.
- External enable to switch out stages that might be in maintenance or are out of order.
- Timers to sequence the operation of the next stage or detect faulty stages.
- Incremental or decremented staging.
- Can be set to work with analog process variables such as analog pressure transducers or binary type such as pressure switches for complex or simple operation.

Pump alternate and paralleling can be created using the following syntax:

Syntax:	BO_1 =	- ALTERNATE		
		PV	[OPERAND_1]	
		ALT_STAGES	[OPERAND_2] 2 to 8	
		EEPROM	[Index to <b>EEPROM</b> , ADF or	ADI or ADB]
		ALT_DEC_INC	[OPERAND_3] 0/1	**optional
		ALT_LEADER	[OPERAND_4] 1 to 8	**optional
		ALT_TMR_NEXT_STAGE	[OPERAND_5] 1 to 16	**optional
		ALT_TMR_ALARM	[OPERAND_6] 1 to 16	**optional
		SP	[OPERAND_7]	**optional
		PB	[OPERAND_8]	**optional
		ALT_FEEDBACK	[OPERAND_9]	**optional
		ALT_EXT_ENABLE	[OPERAND_10]	**optional



In the first example we can see how to set up a simple four stage pump array alternator. In this case the process variable is a pressure switch connected to binary input 1 that would start the leader pump in sequence every time the pressure drops so it closes, and stops them when the pressure rises and the pressure switch opens.

If the pressure switch operates inverse a simple invert instruction can be used to invert the signal that is fed into binary input 1.



In this other example an analog pressure transducer connected to analog input 1 is used to start the current leader pump when the pressure falls below 100 PSI and conversely to stop it and change the pump sequence when it reaches 120 PSI.

// Simplest construction with analog PV, set point and proportional band have // to be provided as well

Example: RES_BIT_1 = ALTERNATE

PV	=	AI_1	$\setminus$
ALT_STAGES	=	4	$\setminus$
EEPROM	=	ADF_1	$\setminus$
SP	=	<b>100</b>	$\setminus$
PB	=	15	

All other parameters of the ALTERNATE keyword are optional and can be added to the line in any order. They work to personalize the operation of the ALTERNATE module. For more information refer to the OpenBAS NX programmer's manual to get examples of wiring and online programming of this instruction.

ALT_PARALLEL	= <mark>0</mark> = alt	ernate, <mark>1</mark> = alt + parallel
ALT_DEC_INC	= <mark>0</mark> = dec:	rement, <mark>1</mark> = increment sequence
ALT_LEADER	= <mark>2</mark> to <mark>8</mark>	
<mark>ALT_FEEDBACK</mark>	= <mark>BI_1</mark>	Starting feedback input
ALT_EXT_ENABLE	= <mark>BI_2</mark>	Starting external enable inp.
ALT_TMR_NEXT_STAGE	$= TMR_{10}$	Timers have to be set with
ALT_TMR_ALARM	$= TMR_2$	the TIMER keyword in
		individual lines with their
		corresponding time values

**NOTE:** Every time an ALTERNATE module is set up or its operating features other than the set point or proportional band are modified, it is recommended to reset the OpenBAS controller to reset the internal status sequence of operation of this instruction.



#### Keyword: TREND

	FR	ES	DE		NL
TREND	TENDANCE	TENDENCIA	TENDENZ	TENDENZA	TREND

The OpenBAS NX controllers have the capability to log data and then later with the aid of the software this logged data can be retrieved to create graphics. The **TREND** keyword adds in setting up to sixteen available trends. Trend data takes the following format:

Syntax:	TREND [ <mark>OPERAND 1</mark> ] INTERVAL_MINUTES = [1, 5, 10, 15, 20, 30, 60 minutes]
// Trending Example:	<pre>made easy up to 16 trends at: 1,5,10,15,20,30,60 minute interval TREND AI_1 INTERVAL_MINUTES = 15</pre>
// Trending Example:	for binaries, only change of state (COS) is detected and stored TREND BI_1

Standard OpenBAS NX controllers can store up to 124 samples for analog values at the programmed interval, so for example if 60 minutes is selected, the last 124 hours or five days will be stored.

The following table gives storage capacity at different intervals:

Usin	ng standard s	torage	Usi	Using expanded memory			
Save interval	ve interval Hours of storage Days of storage			al Hours of storage	Days of stor		
1	2.1	0.1	1	16.7			
5	10.3	0.4	5	83.3			
10	20.7	0.9	10	166.7			
15	31.0	1.3	15	250.0	1		
20	41.3	1.7	20	333.3	1		
30	62.0	2.6	30	500.0	2		
60	124.0	5.2	60	1,000.0	4		

Note: 1 minute interval saving reverts to 5 minutes after 124 samples to protect EEPROM memory

For binary values, the last 248 state changes are stored without regard to any sampling rate, so if for example a variable changes states twice a day, the buffer will contain data of 124 days or four months.

If 128K or 256K expanded memory or a dual core is installed, the trend data logging is incremented to 1,000 samples.

If the dual core is installed in an installed USB memory the data of trends created with the TREND keyword will be stored on a one minute period with unlimited capability. The space of the USB memory should be sufficient to provide for years of storage.



# Keyword: COMM

<b>C</b> B	FR	ES	DE		NL
COMM	COMM	COMM	COMM	COMM	COMM
DEVICE_ADDRESS	ADDRESSE_COM	DIRECCION_COM	REGLERADRESSE	INDIRIZZO_DISPOSITIVO	CONTROLLER_ADRES
PARITY_NONE	PARITE_SANS	PARIDAD_SIN	PARITAT_KEINE	PARITA_NESSUNA	PARITEIT_NONE
PARITY_ODD	PARITE_IMPAIRE	PARIDAD_NON	PARITAT_UNGERADE	PARITA_DISPARI	PARITEIT_ONEVEN
PARITY_EVEN	PARITE_PAIRE	PARIDAD_PAR	PARITAT_SOGAR	PARITA_PARI	PARITEIT_EVEN
STOP_BIT_0	BIT_D_ARRET_0	BIT_PARO_0	STOP_BIT_0	STOP_BIT_0	STOP_BIT_0
STOP_BIT_1	BIT_D_ARRET_1	BIT_PARO_1	STOP_BIT_1	STOP_BIT_1	STOP_BIT_1
BAUD_RATE	BAUD	BAUDIOS	BAUD	BAUD	BAUD
PROTOCOL_ASCII_TERMINAL	PROTOCOLE_ASCII_TERMINAL	PROTOCOLO_ASCII_TERMINAL	PROTOKOLL_ASCII_TERMINAL	PROTOCOLLO_ASCII_TERMINAL	PROTOCOL_ASCII_TERMINAL
PROTOCOL_OPTO_22_SLAVE	PROTOCOLE_OPTO_22_ESCLAVE	PROTOCOLO_OPTO_22_ESCLAVO	PROTOKOLL_OPTO_22_SLAVE	PROTOCOLLO_OPTO_22_SCHIAVO	PROTOCOL_OPTO_22_SLAAF
PROTOCOL_N2_OPEN_SLAVE	PROTOCOLE_N2_OPEN_ESCLAVE	PROTOCOLO_N2_OPEN_ESCLAVO	PROTOKOLL_N2_OPEN_SLAVE	PROTOCOLLO_N2_OPEN_SCHIAVO	PROTOCOL_N2_OPEN_SLAAF
PROTOCOL_MODBUS_SLAVE	PROTOCOLE_MODBUS_ESCLAVE	PROTOCOLO_MODBUS_ESCLAVO	PROTOKOLL_MODBUS_SLAVE	PROTOCOLLO_MODBUS_SCHIAVO	PROTOCOL_MODBUS_SLAAF
PROTOCOL_BANCET_MSTP	PROTOCOLE_BANCET_MSTP	PROTOCOLO_BANCET_MSTP	PROTOKOLL_BANCET_MSTP	PROTOCOLLO_BANCET_MSTP	PROTOCOL_BANCET_MSTP
PROTOCOL_OPTO22_MASTER	PROTOCOLE_OPTO22_MAITRE	PROTOCOLO_OPTO22_MAESTRO	PROTOKOLL_OPTO22_MEISTER	PROTOCOLLO_OPTO22_MASTER	PROTOCOL_OPTO22_MEESTER
PROTOCOL MODBUS MASTER	PROTOCOLE MODBUS MAITRE	PROTOCOLO MODBUS MAESTRO	PROTOKOLL MODBUS MEISTER	PROTOCOLLO MODBUS MASTER	PROTOCOL MODBUS MEESTER

Standard OpenBAS NX controllers have two communication ports; dual core adds the third communication port. The COMM keyword is used to set up a communication port.

Default	values are highlighted in <mark>g</mark>	reen:	
Syntax:	COMM [communication por	t 1, 2, 3]	
	PROTOCOL	PROTOCOL_ASCII_TERMINAL,	PROTOCOL_OPTO_22_SLAVE,
		PROTOCOL_N2_OPEN_SLAVE,	PROTOCOL_MODBUS_SLAVE,
		PROTOCOL_BANCET_MSTP,	PROTOCOL_OPTO22_MASTER,
		PROTOCOL_MODBUS_MASTER,	
	DEVICE_ADDRESS	<mark>1</mark> to 253	
	BAUD_RATE	2400, 4800, <mark>9600</mark> , 19200,	38400, 57600, 76800
	PARITY	<pre>PARITY_NONE, PARITY_ODD,</pre>	PARITY_EVEN
	STOP_BIT	STOP_BIT_0, <pre>STOP_BIT_1</pre>	

Note: Each one of the communication ports can be setup only one per script, so if a COMM keyword for a given communication port is used an error will be generated.

Example:	COMM 1	1	PROTOCOL_ BAUD_RATE	BANCET_MS = 38400	STP	DEVICE_ <i>F</i>	ADDRESS =	: 5	\
Example:	COMM 1	L	PROTOCOL_ BAUD_RATE	MODBUS_SI = 9600	LAVE PARITY_	DEVICE_ <i>F</i> ODD STOP	ADDRESS = >_BIT_1	: 1	\
Example:	COMM 1	1	PROTOCOL_	MODBUS_MA	ASTER BA	UD_RATE	= 19200	<mark>PARITY</mark>	_ODD
Example:	COMM 1	1	PROTOCOL_	ASCII_TER	RMINAL	BAUD_RAI	<mark>.e</mark> = 9600	)	
Example:	COMM 1	1	PROTOCOL_	OPTO_22_S	SLAVE	DEVICE_A	ADDRESS =	: 1	
Example:	COMM 1	1	PROTOCOL_	<mark>N2_OPEN_S</mark>	SLAVE	DEVICE_P	ADDRESS =	: 10	



Each of the communication ports can be as master or slave of the supported protocols of each port.

Example:	COMM	2	PROTOCOL_ASCII_TERMINAL	BAUD_RATE = 9600			
Example:	COMM	2	PROTOCOL_OPTO_22_SLAVE	DEVICE_ADDRESS = 5			
Example:	COMM	2	PROTOCOL_N2_OPEN_SLAVE	DEVICE_ADDRESS = 5			
Example:	COMM	2	PROTOCOL_OPTO22_MASTER	<mark>BAUD_RATE</mark> = 9600			
On controllers with the dual installed the third communication port is available.							

Example:	COMM	3	PROTOCOL	_OPTO_22	2_SLAVE	DEVICE_	ADDRESS	=	5	
Example:	COMM	3	PROTOCOL	_N2_OPEN	I_SLAVE	DEVICE_	_ADDRESS	=	5	
Example:	COMM	3	PROTOCOL	_MODBUS_	_SLAVE	DEVICE_	_ADDRESS	=	5	$\setminus$
		E	BAUD_RATE	= 9200	PARITY_N	<mark>JONE</mark>				

**Note:** If the baud rate is changed, the new baud rate will not take effect until the controller is reset.

The reason for this is because the configuration of the communication port can be also done via the communication port itself. If baud rate change were performed during the communication port configuration there would be no way to finish and verify the configuration gracefully.

So the changes to the speed of the communication port will only take effect after a reset. Either hardware or software invoked.



## Keyword: WIRELESS_LINK

<b>CB</b>	FR	ES	DE		NL
WIRELESS_LINK	LIAISON_SANS_FIL	ENLACE_INALAMBRICO	DRAHTLOSE_VERBINDUNG	COLLEGAMENTO_SENZA_FILI	DRAADLOZE_VERBINDING
WLS_GROUP	WLS_GRUPE	WLS_GRUPO	WLS_GRUPPE	WLS_GRUPPO	WLS_GROEP
WLS_ADDRESS	WLS_ADDRESSE	WLS_DIRECCION	WLS_ADDRESSE	WLS_INDIRIZZO	WLS_ADRES

Standard OpenBAS NX controllers can receive information sent from up to ten wireless thermostats if the wireless I2C interface is installed.

The WIRELESS_LINK keyword aids in programming each one of the ten wireless links that can be active at any given time.

To Configure I2C wireless interface takes the format:

Syntax:	WIRELESS_LINK	[1 to 10]	
	WLS_GROUP	[1 to 10]	
	WLS_ADDRESS	[1 to 199]	
// Up to 10 // and addre	wireless links car	n be created with groups set	between 1-10
Frample:	$\frac{1}{MTRFLESS I TNK} = 1$	WIS GROUD = 1 WIS ADDRESS -	1
Induipic	"TICHTOO TITUK - T		-
// Up to 10	wireless links car	n be created with groups set	between 1-10
// and addre	esses 1-199		
Example:	WIRELESS LINK 2 W	LS GROUP 5 WLS ADDRESS 90	

After the wireless links have been created, each of the parameters that the wireless transmitter sends can be added as remote points using the REMOTE keyword that will be explained shortly.



## Keyword: REMOTE

<b>CONTRACTOR</b>	FR	ES	DE		NL
REMOTE	ELOIGNE	REMOTO	FERNPUNKT	PUNTO_A_DISTANZA	AFGELEGEN
READ_COIL	READ_COIL	READ_COIL	READ_COIL	READ_COIL	READ_COIL
READ_INPUT_STATUS	READ_INPUT_STATUS	READ_INPUT_STATUS	READ_INPUT_STATUS	READ_INPUT_STATUS	READ_INPUT_STATUS
READ_INPUT_REGISTER	READ_INPUT_REGISTER	READ_INPUT_REGISTER	READ_INPUT_REGISTER	READ_INPUT_REGISTER	READ_INPUT_REGISTER
READ_HOLDING_REGISTER	READ_HOLDING_REGISTER	READ_HOLDING_REGISTER	READ_HOLDING_REGISTER	READ_HOLDING_REGISTER	READ_HOLDING_REGISTER
ANALOG_VALUE	ANALOG_VALUE	ANALOG_VALUE	ANALOG_VALUE	ANALOG_VALUE	ANALOG_VALUE
BINARY_VALUE	BINARY_VALUE	BINARY_VALUE	BINARY_VALUE	BINARY_VALUE	BINARY_VALUE
NX_SLAVE	NX_ESCLAVE	NX_ESCLAVO	NX_SLAVE	NX_SCHIAVO	NX_SLAAF
DEVICE ADDRESS	ADDRESSE COM	DIRECCION COM	REGLERADRESSE	INDIRIZZO DISPOSITIVO	CONTROLLER ADRES

Once a communication port has been set up as a master, the **REMOTE** points can be added so the master starts polling the information. Normally the master reads the set up remote points and keeps the remote table updated with the most recent value of the slave device.

However when a remote point is written via a communication port or the PLC issues a write to a remote point, the logic in the master port will instead write the remote point to the slave with the contents stores in the remote point value register.

Add remote points to the mapping table with the following format for wired remote points:

Syntax:	REMOTE COMX [OPERAN DEVICE_ [NAME]	( <mark>ND_1</mark> ] I _ADDRESS I ( }		Commun Databa Device Option point label	nication ase object addres ally a stand and it y	port ct or s bas name will	c COM pro sed c can be a	11, COM2 otocol d on proto be give utomati	2 or COM3 dependant ocol limi en after .cally ac	type ts the remote dded as a
Example:	<b>REMOTE</b>	COM1	READ_I	INPUT_F	EGISTER		1	DEVICE_	_ADDRESS	1 OAT
	REMOTE	COM1	READ_H	OLDING	_REGIST	ER	100	DEVICE_	_ADDRESS	1 Z_TEMP
	<mark>REMOTE</mark>	COM1	READ_C	COIL			25	DEVICE_	_ADDRESS	1 ALARM
	<mark>REMOTE</mark>	COM2	NX_SLA	AVE	DEVICE	ADDRE	<mark>ISS</mark>	100	SLAVE_1	L
	REMOTE	COM2	NX_SLA	AVE	DEVICE	ADDRE	<mark>ISS</mark>	101	SLAVE_2	2
	<mark>REMOTE</mark>	COM2	AI_1		DEVICE	ADDRE	<mark>ISS</mark>	1	PRESSUF	RE
	<mark>REMOTE</mark>	COM2	AI_2		DEVICE	ADDRE	<mark>ISS</mark>	1		
	<mark>REMOTE</mark>	COM2	в0_1		DEVICE	ADDRE	<mark>ISS</mark>	5		
	REMOTE	COM2	BO_10		DEVICE	ADDRE	<mark>ISS</mark>	5		
	REMOTE	COM3	NX_SLA	AVE	DEVICE	ADDRE	ISS	103	ANOTHER	R_SLAVE
	REMOTE	COM3	NX_SLA	AVE	DEVICE_	ADDRE	ISS	104		
	REMOTE	COM3	AI_1		DEVICE_	ADDRE	ISS	1	TEMPERA	ATURE
	<mark>REMOTE</mark>	COM3	BI_1		DEVICE	ADDRE	<mark>ISS</mark>	1	START_S	SIGNAL



Besides wired remote points that will communicate over the controllers field buses, OpenBAS controllers can also map wireless points that come into the system via the I2C wireless adapter. On the previous page prior to the REMOTE keyword we learned how to create WIRELESS_LINKS.

<b>C</b> B	FR	ES	DE		NL
WIRELESS_LINK	LIAISON_SANS_FIL	ENLACE_INALAMBRICO	DRAHTLOSE_VERBINDUNG	COLLEGAMENTO_SENZA_FILI	DRAADLOZE_VERBINDING
WLS_TEMP_C	WLS_TEMP_C	WLS_TEMP_C	WLS_TEMP_C	WLS_TEMP_C	WLS_TEMP_C
WLS_TEMP_F	WLS_TEMP_F	WLS_TEMP_F	WLS_TEMP_F	WLS_TEMP_F	WLS_TEMP_F
WLS_REL_HUM	WLS_HUM_REL	WLS_HUM_REL	WLS_REL_FEUCHTIGKEIT	WLS_UMIDITA_REL	WLS_REL_VOCHTIGHEID
WLS_MODE	WLS_MODE	WLS_MODO	WLS_MODUS	WLS_MODALITA	WLS_MODE
WLS_FAN_SPEED	WLS_VEL_VENTILATEUR	WLS_VEL_VENTILADOR	LS_LUFTER_GESCHWINDIGKE	WLS_VELOCITA_VENT	WLS_VENT_SNELHEID
WLS_KEYBOARD	WLS_CLAVIER	WLS_TECLADO	WLS_TESTATUR	WLS_TESTIERA	WLS_TOETSENBORD
WLS_SP_TEMP	WLS_PC_TEMP	WLS_PA_TEMP	WLS_SP_TEMP	WLS_SP_TEMP	WLS_SP_TEMP
WLS_SP_HUM	WLS_PC_HUM	WLS_PA_HUM	WLS_SP_FEUCHTIGKEIT	WLS_SP_UMIDITA	WLS_SP_VOCHTIGHEID
WLS_SP_T1	WLS_PC_T1	WLS_PA_T1	WLS_SP_T1	WLS_SP_T1	WLS_SP_T1
WLS_SP_PB	WLS_PC_BP	WLS_PA_BP	WLS_SP_PB	WLS_SP_PB	WLS_SP_PB
WLS_SP_UNOCC	WLS_PC_INOCCUPE	WLS_PA_DESOC	WLS_SP_UNBESETZ	WLS_SP_DISOCCUPATO	WLS_SP_ONBEZET
WLS_BATTERY_VOLTAGE	WLS_VOLTAGE_BATTERIE	WLS_VOLTAJE_BATERIA	WLS_BATTERIESPANNUNG	WLS_VOLTAGIO_BATTERIA	WLS_BATTERIJ_VOLTAGE
WLS_AUX_INP	WLS_ENT_AUX	WLS_ENT_AUX	WLS_AUX_EIN	WLS_AUX_ING	WLS_AUX_ING
WLS_LINK_TMR	WLS_TM_LIEN	WLS_TM_ENLACE	WLS_LINK_TMR	WLS_LINK_TMR	WLS_LINK_TMR
WLS SEC LINK LOST	WLS SEC SANS LIEN	WLS SEC SIN ENLACE	WLS SEK KEIN LINK	LS SEC SENSA COLLEGAMEN	WLS SEC ZONDER KOPPELING

# Keywords: Parameters to map wireless parameters into remote points

Once a wireless link is created it is easy to add the parameters that the wireless transmitters have. They can be added to the REMOTE points using the following format so they will get mapped into the wired REMOTE points tabled and can be used elsewhere in the system:

Syntax:	<b>REMOTE</b>							
COM2			Only COM	Only COM2 point table supports wireless points				
	[OPERAI	ND_1]	Database	Database object or protocol dependant type				
	WIRELES	SS_LII	<mark>NK</mark> Make a r	eference to an exist	ing wireless links			
Example:	<mark>REMOTE</mark>	COM2	WLS_TEMP_C	WIRELESS_LINK	1			
	<mark>REMOTE</mark>	COM2	WLS_TEMP_F	WIRELESS_LINK	1			
	<mark>REMOTE</mark>	COM2	WLS_HUM_REL	WIRELESS_LINK	1			
	<mark>REMOTE</mark>	COM2	WLS_TEMP_C	WIRELESS_LINK	2			
	<mark>REMOTE</mark>	COM2	WLS_TEMP_F	WIRELESS_LINK	2			
	REMOTE	COM2	WLS_HUM_REL	WIRELESS_LINK	2			

There are the standard 50 remote points available with standard memory:

• RMT_1...51

420 additional remote points are available for dual core or if 32KKNV expansion memory is installed:

- RMT_51...255
- **RES_FLT_41...255** ← these registers can be indistinctively used as either REMOTE points or standard RES_FLT result registers.



For wired protocols the following lists show the kind of objects that can be mapped into **REMOTE** points:

# Standard regions for N2_OPEN and OPTO22

REGION_ERROR	// Invalid (OR NULL) region	
AI	// (140) Analog Inputs	
BI	// (110) Binary Inputs	
AO	// (110) Analog Outputs	
BO	// (140) Binary Outputs	
ADF	// (1100 xee) (101140 ram)	Internal RES_FLT
ADI	// (1100 xee) (101116 ram)	Timers
ADB	// (1100 xee)	

### Additional regions for OPTO22 to support slave devices

NX_SLAVE

### Additional regions for Wireless remote points

WLS_TEMP_C WLS_TEMP_F WLS_REL_HUM WLS_MODE WLS_FAN_SPEED WLS_FAN_SPEED WLS_SP_TEMP WLS_SP_HUM WLS_SP_HUM WLS_SP_PB WLS_SP_PB WLS_SP_UNOCC WLS_BATTERY_VOLTAGE WLS_AUX_INP WLS_LINK_TMR WLS_SEC_LINK_LOST

### Modbus types supported

READ_COIL READ_INPUT_STATUS READ_INPUT_REGISTER READ_HOLDING_REGISTER

### **BACnet types supported**

ANALOG_VALUE BINARY_VALUE



# Keyword: AI_CONFIGURATION

# Keyword: AI_CALIBRATION

<b>K</b>	FR	E	DE		
AI_CONFIGURATION	EA_CONFIGURATION	EA_CONFIGURACION	AE_KONFIGURATION	IA_CONFIGURAZIONE	IA_CONFIGURATIE
AI_CALIBRATION	EA_ETALONNAGE	EA_CALIBRACION	AE_KALIBRIERUNG	IA_CALIBRAZIONE	IA_KALIBRIERING

Universal inputs can be used as either digital or analog inputs, in order to get correct readings from the analog inputs. They must be configured correctly with the AI_CONFIGURATION to set their operating mode and with AI_CALIBRATION to set their calibration value.

Also keep in mind that each universal input has an associated hardware DIP SWITCH that has to be set to ON if used with resistive type temperature sensors, and OFF to all other analog types.

Use the following format to se	et up ana	log inputs:
Syntax: AI_CONFIGU	RATION	AI_1 = 1 AI_CALIBRATION = 1.000
The following list give	es the	constant for each analog input type:
• TYPE 12bit	0	// ADC 12-bits : 0 - 4095
• TYPE_1kNI_C	1	// 1000 ohms Nickel °C DIP SWITCH = ON
• TYPE_1kSI_C	2	// 1000 ohms Silicon °C DIP SWITCH = ON
• TYPE_1kA99_C	3	// 1000 ohms A99 °C DIP SWITCH = ON
• TYPE_0_10_vdc	4	// 0-10.0 vdc or (0-20 ma. @250 ohms)
• TYPE_4_20_ma	5	// 4-20ma @ 250 ohms
• TYPE_1kNI_F	6	// 1000 ohms Nickel °F DIP SWITCH = ON
• TYPE_1kSI_F	7	// 1000 ohms Silicon °F <mark>DIP SWITCH = ON</mark>
• TYPE_1kA99_F	8	// 1000 ohms A99 °F DIP SWITCH = ON
• TYPE_RATIO	9	// Ratiometric 0-100% = 10-90 FSR = 0.5-4.5 VDC
• TYPE_TERMOCOUPLE	_J 10	// Type J thermocouple, 51.7 uV/°C x191 amp
• TYPE_TERMOCOUPLE_	_K 11	// Type K thermocouple, 40.6 uV/°C x191 amp
• TYPE_ST_S3K 10K	12	// NTC Kele OK Ohms @ 25°C Type III
• TYPE_TC_1000_1	13	// TC current transformer NX5-SF 1000:1 ratio;
Example: AI_CONFIGU AI_CONFIGU	RATION RATION	AI_1 = 1 AI_CALIBRATION = 0.000 AI_4 = 1 AI_CALIBRATION = 10.000

For additional information regarding wiring and calculation for calibration value for the analog inputs, read the OpenBAS NX manual.

The **eZ App wizard** automatically generates preconfigured analog inputs configuration and calibration based on the chosen application.



### Keyword: PLC_COUNTER

	FR	ES	DE		
PLC COUNTER	AJUSTER INSTRUCTION PLC	AJUSTE INSTRUCCION PLC	PLC ZAEHLER SET	PLC CONTATORE SET	PLC TELLER SET

The PLC_COUNTER keyword is used to provide for additional blank space between instructions, the compiler usually auto increments its counter when generating PLC instructions from the compiled expressions.

However if some code is needed at a specific address which could be a case for subroutines, this keyword comes handy to read just the PLC counter.

The only limitation is the plc counter given should be higher than the current PLC counter or an error would be generated due to an overlapping in memory addresses,

```
Syntax:
            PLC COUNTER [NEW PLC COUNTER ADDRESS] The range is 1-400
// Adjusts PLC counter to a new number, must be higher than current PLC
// instruction counter
Example:
            PLC_COUNTER 100
// The next example shows how subroutines TWO and TWO2 are located at
// absolute PLC addresses 200 and 300 respectively
      [PROGRAM_START]
      CALL TWO
      CALL TWO2
     RES_BIT_1 = LT_GROUP BO_1 BO_2 BO_3 BO_4 BO_5 BO_6 BO_7 BO_8
      RES_BIT_2 = LT_GROUP BO_9 BO_10 BO_11 BO_12
      END
          // Main program ends here
      PLC_COUNTER 200 // Change PLC counter to place TWO @ address 200
      SUB_BEGIN [TWO] // Will add END before SUB to prevent runaway code
            BO_41 = LT_GROUP BO_20_BO_21 BO_22
            BO_{42} = LT_{GROUP} BO_{23} BO_{24} BO_{25}
      SUB_END
      PLC_COUNTER 300 // Change PLC counter to place TWO2 @ address 300
      SUB_BEGIN [TWO2] // Will add END before SUB to prevent runaway code
          AO_1 = 50
      SUB_END
```



Keyword: E_MAIL

<b>C</b>	<b>FB</b>	ES	DE		NL
E MAIL	E MAIL	E MAIL	E MAIL	E MAIL	E MAIL

Send e-mail based on a given condition, up to 4 mails can be programmed per OpenBAS-NWK-ETH3 or OpenBAS-NWK-XP Ethernet web server with the E_MAIL keyword.

Syntax:	E_MAIL [OPERAND_1 trigge TO [MAIL ADDRESS RECEPIE CC [MAIL ADDRESS RECEPIE BCC [MAIL ADDRESS RECEP]	er] ENT (50 chars)] ENT (50 chars)] LENT (50 chars)]
Syntax:	E_MAIL E_MAIL_SUBJECT [S	SUBJECT STRING (100 chars)]
Syntax:	E_MAIL E_MAIL_BODY [SUBJ	JECT STRING (190 chars)]
Example:	E_MAIL RES_BIT_1 TO rme CC ri} BCC nz	edina@mircomgroup.com \ xmed@prodigy.net.mx \ x5-net@rikmed.com
	E_MAIL E_MAIL_SUBJECT	This is a sample message sent by e-mail
	E_MAIL E_MAIL_BODY	Will be sent when the trigger register $\setminus$ is = 1, up to 160 characters can be added

In order to send an e-mail, besides setting the controller with an IP or it can be automatically provided, the network Ethernet switch it is connected to should have connectivity to the internet, and any firewall's limitations to access the mail server for sending mails using the SMTP on the needed port should be removed by IT administrators.



### Keyword: SMS_TEXT



Send SMS text message based on a given condition, up to 20 SMS different text messages can be sent per each OpenBAS-NWK-SMS text message generator via SMS/GSM cellular network using the SMS_TEXT keyword.

The format to send an SMS message is as follows:

Syntax: SMS_TEXT [OPERAND_1]					
	TO	[ PHONE	NUMBER]		
	SMS_REPEAT	<mark>c</mark> [010	]		
	SMS_RATE	[125	5 minutes]		
	SMS_TEXT	[100 c	har SMS mes	sage]	
Example:	<mark>SMS_TEXT</mark> RE	ES_BIT_1	TO	+5215538213626	$\setminus$
			SMS_REPEAT	3	$\setminus$
			SMS_RATE	5	$\setminus$
			SMS_TEXT	Alarm has been	activated

Prior to sending SMS text messages, an OpenBAS-NWK-SMS text message generator should have a valid SIM card installed with enough balance to be able to send the messages. Also the GSM/SMS antenna should be installed to the module and coverage from the cellular company the SIM card is attached to, should be available.



# Annex A, Compiler errors listing

The script compiler generates an error if any of the keywords or parameters are incorrect. Following is a comprehensive lists of the registered errors. For more information on each keyword syntax and rules refer to the detailed keyword description.

ERR_001_SCRIPT_FILES_1_T0_10: SCRIPT NUMBER <1 or >10. ERR 002 UKNOWN TARGET HARDWARE: UKNOWN TARGET HARDWARE ERR_003_MAX_TOKENS_PRE_PROCESS: MAX_TOKENS ERROR ( preProcessLine() ) ERR 004 MAX TOKENS 2 PRE PROCESS: MAX TOKENS ERROR2 ( printTokens() ) ERR_005_LINE_LENGTH_EXCEEDED: LINE LONGER THAN 250 CHARACTERS ERR_006_TOKEN_DECODE: TOKEN DECODE ERROR ERR_007_READING_TOKEN_ARRAY: ERROR READING TOKEN ARRAY ERR 008 READING PROCESSING KEYWORD: ERROR PROCESSING KEYWORD [] ERR_009_ERROR_PROCESSING_EXPRESSION: ERROR PROCESSING EXPRESSION ERR_010_INCORRECT_TOKEN_SEQUENCE: INCORRECT TOKEN SEQUENCE ERR_011_NUMBER_OF_TOKENS_EXCEEDED: NUMBER OF TOKENS EXCEEDED ERR_012_UNEXPECTED_END_OF_FILE: UNEXPECTED END OF FILE FOUND IN CURRENT LINE {EOF} ERR_013_POST_PROCESSOR_LINE_LENGTH_EXCEEDED: POST PROCESSOR, LINE SIZE EXCEEDED 250 CHARACTERS ERR 014_DEFINED_LABEL_IS_SAME_AS_KEYWORD: LABEL [] IS SAME AS KEYWORD ERR_015_DEFINED_LABEL_IS_SAME_AS_DB_OBJECT: LABEL [] IS SAME AS DATABASE OBJECT ERR_016_MAX_LABELS_EXCEEDED: NUMBER OF LABELS EXCEEDED ERR_017_UKNOWN_TOKEN: UKNOWN TOKEN [] ERR_018_ERROR_DEFINING_NEW_LABEL: SYNTAX TO DEFINE A NEW EQUATE LABEL IS INCORRECT ERR_019_DATABASE_VARIABLE_INCORRECT: DATABASE VARIABLE INCORRECT



ERR_020_CUSTOM_ID_LABEL_SAME_AS_KEYWORD:	CUSTOM ID LABEL IS SAME AS KEYWORD
ERR_021_MAX_DEFINITIONS_EXCEEDED:	NUMBER OF CUSTOM DEFINITIONS EXCEEDED
ERR_022_WRONG_SYNTAX_IF_KEYWORD:	WRONG SYNTAX IN 'IF' KEYWORD
ERR_023_WRONG_SYNTAX_JUMP_KEYWORD:	WRONG SYNTAX IN 'JUMP' KEYWORD
ERR_024_WRONG_SYNTAX_CALL_KEYWORD:	WRONG SYNTAX IN 'CALL' KEYWORD
ERR_025_INCORRECT_TOKEN_OR_OPERAND_1st_TOKEN:	INCORRECT KEYWORD OR OPERAND [] IN FIRST TOKEN IN LINE
ERR_026_LEFT_OPERAND_IS_NOT_WRITEABLE:	LEFT OPERAND IS NOT WRITEABLE (IT IS READ ONLY)
ERR_027_INCORRECT_ASSIGNMENT_OPERATOR:	INCORRECT ASSIGNMENT OPERATOR FOLLOWING DATA BASE OBJECT
ERR_028_MISSING_ASSIGNMENT_OPERATOR:	MISSING ASSIGNMENT OPERATOR FOLLOWING DATA BASE OBJECT
ERR_029_COMPLEX_MATH_NOT_SUPPORTED:	COMPLEX MATH NOT SUPPORTED
ERR_030_INCORRECT_MATH_OPERATOR:	INCORRECT MATH OPERATOR FOLLOWING OPERAND
ERR_031_MATH_EXPRESSION_EXCEEDS_OPERANDS:	MATH EXPRESSION EXCEEDS NUMBER OF OPERANDS
ERR_032_INVALID_OPERAND_FOUND_IN_EXPRESSION:	INVALID OPERAND FOUND IN EXPRESSION
ERR_033_NUMBER_OF_OPERANDS_EXCEEDED:	NUMBER OF OPERANDS EXCEEDED FOR MATH OPERATION
ERR_034_INVALID_OPERAND_IN_EXPRESSION:	INVALID OPERAND FOUND IN EXPRESSION
ERR_035_NUMBER_OPERATORS_EXCEEDED_BOOLEAN:	NUMBER OF OPERANDS EXCEEDED: BOOLEAN
ERR_036_INVERT_TAKES_ONE_OPERAND_ONLY:	INVERT INSTRUCTION TAKES ONLY ONE OPERAND
ERR_037_INVALID_OPERAND_IN_INVERT:	INVALID OPERAND FOUND IN INVERT INSTRUCTION
ERR_038_XOR_TAKES_ONLY_TWO_OPERANDS:	XOR/NXOR INSTRUCTION TAKES ONLY TWO OPERANDS
ERR_039_XOR_INVALID_OPERAND:	INVALID OPERAND FOUND IN XOR/NXOR INSTRUCTION


ERR_040_AND_OR_NEEDS_FOUR_OPERANDS:

ERR_041_AND_OR__INVALID_OPERAND:

ERR_042_SET_RESET_NEEDS_TWO_OPERANDS:

ERR_043_START_STOP_EMRG_NEEDS_THREE_OPERANDS:

ERR_044_START_STOP_EMRG_INVALID_OPERAND:

ERR_045_SET_RESET_WRONG_SYNTAX:

ERR_046_START_STOP_MISSING_EMERG_STOP:

ERR_047_IN_OUTSIDE_ERROR_IN_FLAG_PARAMETER:

ERR_048_IN_OUTSIDE_TAKES_3_4_OPERANDS:

ERR 049 HYSTERESIS TAKES THREE OPERANDS:

ERR_050_IN_OUT_HYST_WRONG_OPERAND:

ERR_051_NUMBER_OF_SCHEDULES_EXCEEDED:

ERR_052_SCHEDULES_WEEK_FLAG_FORMAT_ERROR:

ERR_053_SCHEDULES_WRONG_DATE:

ERR_054_SCHEDULES_WRONG_SYNTAX:

ERR_055_UNHANDLED_KEYWORD:

ERR_056_RUNAWAY_EXPRESSION:

AND_OR/AND_NOR INSTRUCTION TAKES ALWAYS FOUR OPERANDS

INVALID OPERAND FOUND IN AND_OR/AND_NOR INSTRUCTION

SET/RESET INSTRUCTION TAKES ALWAYS TWO OPERANDS

START/STOP[/EMRG_STOP] INSTRUCTION TAKES
TWO OR THREE OPERANDS

INVALID OPERAND FOUND IN SET/RESET OR START/STOP INSTRUCTION

SET/RESET WRONG SYNTAX

START/STOP/EMRG_STOP MISSING EMERGENCY
STOP 'EMRG_STOP' KEYWORD

INSIDE/OUTSIDE INSTRUCTIONS ERROR IN INVERT FLAG PARAMETER

INSIDE/OUTSIDE INSTRUCTIONS TAKE THREE OR FOUR OPERANDS

HYSTERESIS INSTRUCTION TAKES ALWAYS THREE OPERANDS

INVALID OPERAND FOUND IN INSIDE/OUTSIDE/HYSTERESIS INSTRUCION

NUMBER OF SCHEDULES EXCEEDED

SCHEDULE, DAYS OF WEEK FLAG FORMAT ERROR
{------} {mtwtfssH}

SCHEDULE, WRONG DATE, DAYS MUST BE 1 TO 29,30,31 DEPENDING ONMONTH, AND MONTH 1 TO 12

SCHEDULE, WRONG SYNTAX

UNHANDLED KEYWORD AFTER '=' OPERAND

RUNAWAY EXPRESSION TRAP



ERR_057_WRONG_TIME_FORMAT_DELIMITER:

ERR 058 WRONG TIME FORMAT:

ERR_059_WRONG_TIME_RANGE:

ERR_060_INCORRECT_TIMER_NUMBER:

ERR_061_TOKEN_SHOULD_BE_FLOAT_CONSTANT:

ERR_062_STACK_FOR_CONSTANT_FLOATS_EXCEEDED:

ERR_063_ADI_TO_STORE_TIMER_MUST_BE_1_TO_100:

ERR_064_WRONG_SYNTAX_ASSIGNING_ADI_VALUE:

ERR_065_TIMER_WRONG_SYNTAX:

ERR_066_TIMER_NUMBER_MISMATCH:

ERR_067_TIMER_OSC_FREQ_OUTPUT_WRONG_TYPE:

ERR_068_TIMER_OSC_FREQ_OUTPUT_WRONG_VALUE:

ERR_069_INCORRECT_ASSGN_OPER_AFTER_THEN:

ERR_070_INCORRECT_LEFT_OPER_CANT_WRITE:

ERR_071_RUN_LOAD_TO_BE_USED_ONLY_WITH_TMRS:

ERR_072_ONLY_ONE_ELSE_PER_IF:

SCHEDULE, WRONG TIME FORMAT DELIMITER
{hh:mm} IN 24 HOUR FORMAT
{0:00} to {23:59}

SCHEDULE, WRONG TIME FORMAT {hh:mm} IN 24 HOUR FORMAT {0:00} to {23:59}

SCHEDULE, WRONG TIME RANGE {hh:mm} IN 24 HOUR FORMAT {0:00} to {23:59}

TIMER, INCORRECT TIMER NUMBER, MUST BE 1 TO 16

TOKEN SHOULD BE A FLOAT CONSTANT (K_FLT)

STACK TO STORE CONSTANT FLOATS IS EXCEEDED

ADI TO STORE TIMER MUST BE 1 TO 100

TIMER, WRONG SYNTAX ASSIGNING ADI VALUE, MUST BE 1 TO 9999

TIMER, WRONG SYNTAX OR WRONG NUMBER OF PARAMETERS

TIMER NUMBER MISMATCH, RIGHT SIDE OF '=' DOESN'T MATCH TIMER IN RIGHT SIDE OF EXPRESSION

FREQUENCY CONVERTERS AND OSCILATORS CAN ONLY OUTPUT PULSES TO: RES_BIT, BINARY OUTPUTS OR TIMER STATUS

TIMER, WRONG VALUE FOR OSCILATOR OR FREQUENCY CONVERTER, MUST BE 1 TO 999

INCORRECT ASSIGNMENT OPERATOR AFTER THEN KEYWORD

INCORRECT LEFT OPERAND, HARDWARE INPUTS CAN'T BE WRITTEN

RUN AND LOAD IS TO BE USED ONLY WITH TIMERS

ONLY ONE ELSE KEYWORD IS ALLOWED PER IF STATEMENT



ERR_073_ONLY_ONE_THEN_PER_IF:

ERR_074_PLC_CURRENT_INSTRUCTION_ERROR:

ERR_075_LINK_ERROR_LABEL_NOT_FOUND:

ERR_076_LINK_JUMP_OUTSIDE_RANGE:

ERR_077_LINK_CALL_OUTSIDE_RANGE:

ERR_078_WRONG_EEPROM_INITIALIZATION_SYNTAX:

ERR_079_WRONG_EEPROM_VALUE:

ERR_080_PID_WRONG_SYNTAX:

ERR_081_PID_EEPROM_STORAGE_OUT_OF_RANGE:

ERR_082_WRONG_OUTPUT_REGION_SELECTED:

ERR_083_LIGHTING_GROUP_WRONG_SYNTAX:

ERR_084_SUB_BEGIN_NEEDS_LABEL:

ERR_085_PLC_COUNTER_SET_WRONG_SYNTAX:

ERR_086_PLC_COUNTER_WRONG_VALUE:

ERR_087_DEFINED_LABEL_IS_DUPLICATED:

ERR_088_FILE_REPOSITIONING_ERROR: ERR 089 ERROR OPENING DB FILE:

_ _ _ _ _ _

ERR_090_PLC_DECODING_ERROR_MAP_FILE:

ONLY ONE THEN KEYWORD IS ALLOWED PER IF STATEMENT

LINKER, PLC CURRENT INSTRUCTION OUTSIDE 1-400 RANGE

LINKER, LABEL NOT FOUND FOR JUMP OR CALL INSTRUCTION

LINKER, JUMP EXCEEDS 200 INSTRUCTIONS OR NEGATIVE JUMP OR ABOVE INSTRUCTION 400

LINKER, CALL LIES OUTSIDE 1-400 INSTRUCTION RANGE

EEPROM, WRONG INITIALIZATION SYNTAX

EEPROM, INITIALIZATION VALUE OUTSIDE RANGE FOR TYPE

PROPORTIONAL CONTROL, WRONG SYNTAX

PROPORTIONAL CONTROL, PARAMETERS EEPROM STORAGE OUT OF RANGE

PROPORTIONAL CONTROL, OUPTUT MUST BE ANALOG OUTPUT OR RESULT FLOAT REGISTER

LIGHTING GROUP WRONG SYNTAX

SUBROUTINE KEYWORD NEEDS AN ID LABEL SUCH AS: SUB BEGIN [ID LABEL]

PLC COUNTER SET WRONG SYNTAX

PLC COUNTER SET WRONG VALUE, MUST BE HIGHER THAN CURRENT COUNTER

DEFINED LABEL IS DUPLICATED, IT HAS ALREADY BEEN DEFINED BEFORE

LINK FILE REPOSITIONING ERROR

OPENING DATA BASE FILE FOR WRITING RETURNED ERROR

DECODING PLC INSTRUCTION FROM MAP FILE NOT POSSIBLE



ERR_091_ADX_DUPLICATED_INITIALIZATION:

CURRENT VARIABLE HAS DUPLICATE

PROPORTIONAL BAND VALUES

INITIALIZATION

ERR_092_PLC_DECODING_ERROR_RESULT_REGISTER:	WRONG RESULT REGISTER DECODING PLC INSTRUCTION FROM MAP FILE
ERR_093_PLC_DECODING_ERROR_OPERAND:	WRONG OPERAND WHEN DECODING PLC INSTRUCTION FROM MAP FILE
ERR_094_PLC_DECODING_INSTRUCTION_TYPE:	UKNOWN INSTRUCTION TYPE WHEN DECODING PLC INSTRUCTION FROM MAP FILE
ERR_095_LABEL_HAS_INCORRECT_DATABASE_OBJECT:	LABEL DEFINED HAS INCORRECT DATA BASE OBJECT TYPE IN MAP FILE
ERR_096_DUPLICATE_INDEXED_LABEL:	DUPLICATE INDEXED LABEL WAS FOUND IN MAP FILE
ERR_097_TOTALIZER_WRONG_SYNTAX:	TOTALIZER, WRONG SYNTAX
ERR_098_TOTALIZER_WRONG_PARAMETR_RANGES:	TOTALIZER, WRONG OPERAND RANGES
ERR_099_TOTALIZER_WRONG_INPUT_OPERAND:	TOTALIZER, WRONG INPUT OPERAND
ERR_100_ALTERNATOR_WRONG_SYNTAX:	ALTERNATOR, WRONG SYNTAX
ERR_101_ALTERNATOR_WRONG_PROCESS_VARIABLE:	ALTERNATOR, WRONG PROCESS VARIABLE
ERR_102_ALTERNATOR_WRONG_INDEX_TO_FIRST_OUTPUT:	ALTERNATOR, WRONG INDEX TO FIRST OUTPUT
ERR_103_ALTERNATOR_WRONG_NUMBER_OF_STAGES:	ALTERNATOR, WRONG NUMBER OF STAGES
ERR_104_ALTERNATOR_WRONG_EEPROM_PARAMETER_INDEX	: ALTERNATOR, WRONG EEPROM STORAGE PARAMETER
ERR_105_ALTERNATOR_WRONG_LEADER:	ALTERNATOR, WRONG LEADER OR LEADER > NUMBER OF STAGES
ERR_106_ALTERNATOR_WRONG_TIMER_SELECTED:	ALTERNATOR, WRONG TIMER SELECTED FOR NEXT STAGE OR ALARM
ERR_107_ALTERNATOR_WRONG_FEEDBACK_SELECTED:	ALTERNATOR, WRONG FEEDBACK SELECTED
ERR_108_ALTERNATOR_WRONG_EXTERNAL_ENABLE:	ALTERNATOR, WRONG EXTERNAL ENABLE SELECTED
ERR_109_ALTERNATOR_WRONG_SP_OR_PB:	ALTERNATOR, WRONG SET POINT OR



ERR_110_ALTERNATOR_TIMERS_ARE_SAME_NUMBER:	ALTERNATOR, IF TIMERS ARE ACTIVE THEY CAN´T BE THE SAME REGISTER
ERR_111_ALT_FEEDBACK_EXT_ENABLE_MISMATCH:	ALTERNATOR, MISMATCH WITH FEEDBACK AND EXTERNAL ENABLE INPUT OPERANDS
ERR_112_ALTERNATE_MISSING_SP_PB:	ALTERNATOR, MISSING SET POINT AND PROP. BAND WITH ANALOG PROCESS VALUE
ERR_113_HOUR_COUNTER_WRONG_SYNTAX:	HOUR COUNTER, WRONG SYNTAX
ERR_114_HOUR_COUNTER_WRONG_LEFT_OPERAND:	HOUR COUNTER, WRONG LEFT OPERAND, MUST BE RES_FLT
ERR_115_HOUR_COUNTER_RES_AND_PARTIAL_ARE_SAME:	HOUR COUNTER, RESULT REGISTER AND PARTIAL COUNTER CAN'T BE THE SAME REGISTER
ERR_116_HOUR_COUNTER_EEPROM_PARAMETER_INDEX:	HOUR COUNTER, WRONG EEPROM STORAGE PARAMETER
ERR_117_AHU_STAGE_WRONG_SYNTAX:	AHU STAGE, WRONG SYNTAX
ERR_118_AHU_STAGE_WRONG_PROCESS_VARIABLE:	AHU STAGE, WRONG PROCESS VARIABLE
ERR_119_AHU_STAGE_WRONG_SET_POINT:	AHU STAGE, WRONG SETPOINT
ERR_120_AHU_STAGE_WRONG_PROPORTIONAL_BAND:	AHU STAGE, WRONG PROPORTIONAL BAND (DIFFERENTIAL)
ERR_121_AHU_STAGE_WRONG_TIMER_MINIMUM_OFF:	AHU STAGE, WRONG MINIMUM OFF TIMER SELECTED
ERR_122_AHU_STAGE_WRONG_TIMER_MINIMUM_ON:	AHU STAGE, WRONG MINIMUM ON TIMER SELECTED
ERR_123_AHU_STAGE_WRONG_TIMER_INTERSTAGE:	AHU STAGE, WRONG MINIMUM INTERSTAGE TIMER SELECTED
ERR_124_AHU_STAGE_WRONG_OUTPUT:	AHU STAGE, WRONG OUTPUT OPERAND ON LEFT OF '='
ERR_125_AHU_STAGE_WRONG_EEPROM_PARAMETER_INDEX:	AHU STAGE, WRONG EEPROM STORAGE PARAMETER
ERR_126_AHU_STAGE_WRONG_PB:	AHU STAGE, WRONG SETPOINT OR PROPORTIONAL VALUES
ERR_127_AHU_STAGE_DUPLICATE_TIMERS:	AHU STAGE, WRONG DUPLICATE TIMERS SELECTED FOR ON, OFF OR INTERSTAGE TIMERS



ERR_128_AHU_STAGE_MISSING_REQUIRED_PARAMETERS:	AHU STAGE, SOME OF THE REQUIRED PARAMETERS ARE MISSING
ERR_129_TREND_WRONG_DATABASE_OBJECT:	TREND, WRONG DATABASE OBJECT
ERR_130_TREND_WRONG_TIME_SAMPLING_PERIOD:	TREND, WRONG SAMPLING TIME PERIOD, MUST BE 1, 5, 10, 15, 20, 30 OR 60 MINUTES
ERR_131_TREND_MAXIMUM_NUMBER_OF_TRENDS_EXCEEDED	: TREND, NUMBER OF GRAPHS (16) EXCEEDED
ERR_132_TREND_WRONG_SYNTAX:	TREND, WRONG SYNTAX
ERR_133_TREND_HAS_INCORRECT_DATABASE_OBJECT:	TREND, TRAND IN MAP FILE HAS INCORRECT DATABASE OBJECT
ERR_134_TREND_HAS_INCORRECT_INTERVAL:	TREND, TREND IN MAP FILE HAS INCORRECT INTERVAL
ERR_135_SCHEDULES_MAP_FILE_WRONG_INDEX:	SCHEDULES, MAP FILE WRONG INDEX
ERR_136_SCHEDULES_MAP_FILE_WRONG_SYNTAX:	SCHEDULES, MAP FILE WRONG SYNTAX
ERR_137_SCHEDULES_MAP_FILE_WRONG_DESTINATION_OP	: SCHEDULES, MAP FILE INCORRECT DESTINATION OPERAND
ERR_138_SCHEDULES_MAP_FILE_WRONG_DESTINATION_B:	SCHEDULES, MAP FILE INCORRECT DESTINATION OPERAND FOR BINARY SCHEDULE
ERR_139_SCHEDULES_MAP_FILE_WRONG_DESTINATION_A:	SCHEDULES, MAP FILE INCORRECT DESTINATION OPERAND FOR ANALOG SET VALUE SCHEDULE
ERR_140_REMOTE_POINT_WRONG_SYNTAX:	REMOTE POINTS, WRONG SYNTAX
ERR_141_REMOTE_POINT_WRONG_ADDRESS_OR_NUMBER:	REMOTE POINTS, WRONG ADRESS OR OBJECT NUMBER
<pre>ERR_142_REMOTE_POINT_WRONG_TYPE_OR_SYNTAX:</pre>	REMOTE POINTS, WRONG TYPE OR WRONG SYNTAX
ERR_143_PROTOCOL_CONFLICT_IN_COMM_PORT:	REMOTE POINTS, PROTOCOL CONFLICT IN COMM PORT
<pre>ERR_144_REMOTE_POINT_EXCEEDED_FOR_COM1:</pre>	REMOTE POINTS, POINTS EXCEEDED FOR COM1
<pre>ERR_145_REMOTE_POINT_EXCEEDED_FOR_COM2:</pre>	REMOTE POINTS, POINTS EXCEEDED FOR COM2
<pre>ERR_146_REMOTE_POINT_EXCEEDED_FOR_COM3:</pre>	REMOTE POINTS, POINTS EXCEEDED FOR COM3
ERR_147_REMOTE_POINT_WRONG_NX_SLAVE_ADDRESS:	REMOTE POINTS, WRONG SLAVE NX ADDRESS MUST BE 100103



ERR_148_REMOTE_POINT_WRONG_WIRELESS_LINK_NR:	REMOTE POINTS, WRONG WIRELESS LINK NUMBER MUST BE 110
ERR_149_REMOTE_POINT_WRONG_POINT_ADDRESS:	REMOTE POINTS, WRONG ADDRESS,, FOR NX SLAVES 100103 OTHER POINTS 199 or 104253
<pre>ERR_150_REMOTE_POINT_DC_4_1st_RSRVD_NX_SLVS:</pre>	REMOTE POINTS, DUAL CORE REMOTES 5154 RESERVED FOR NX SLAVE DEVICES
ERR_151_KEYWORD_NOT_SUPPORTED_ON_THIS_VERSION:	THIS KEYWORD IS NOT YET SUPPORTED ON THIS VERSION, WILL BE IMPLEMENTED IN A FUTURE REVISION
ERR_152_WIRELESS_LINK_WRONG_SYNTAX:	WIRELESS LINK, WRONG SYNTAX
ERR_153_WIRELESS_LINK_WRONG_INDEX:	WIRELESS LINK, WRONG LINK INDEX, MUST BE 1 to 10
ERR_154_WIRELESS_LINK_WRONG_GROUP:	WIRELESS LINK, WRONG GROUP NUMBER, MUST BE 1 to 10
ERR_155_WIRELESS_LINK_WRONG_ADDRESS:	WIRELESS LINK, WRONG ADDRESS, MUST BE 1 to 199
ERR_156_PROTOCOL_NOT_SUPPORTED_ON_SELECTED_PORT	: COMM PORT, PROTOCOL NOT SUPPORTED ON SELECTED PORT
ERR_157_ADDRESS_OUT_OF_RANGE_FOR_SEL_PROTOCOL:	COMM PORT, ADDRESS OUT OF RANGE FOR SELECTED PROTOCOL
ERR_158_WRONG_BAUD_RATE_SELECTED:	COMM PORT, WRONG BAUD RATE SPECIFIED
ERR_159_COMM_PORT_WRONG_SYNTAX:	COMM PORT, WRONG SYNTAX
ERR_160_COMM_PORT_SET_AS_SLAVE_NEEDS_ADDRESS:	COMM PORT, PORT SET AS SLAVE NEEDS AN ADDRESS DEFINED
ERR_161_N2_OPEN_WRONG_SETUP:	COMM PORT, N2-OPEN WRONG PARAMETERS SETUP
ERR_162_COMM_PORT_DEFINED_MORE_THAN_ONCE:	COMM PORT, DEFINED MORE THAN ONCE
ERR_163_MODBUS_SLAVE_WRONG_ADDRESS:	COMM PORT, MODBUS RTU WRONG SLAVE ADDRESS SELECTED
ERR_164_BACNET_WRONG_ADDRESS:	COMM PORT, BACNET MSTP WRONG SLAVE ADDRESS SELECTED
ERR_165_WRONG_COMM_PORT_SELECTED:	COMM PORT, WRONG NUMBER SELECTED, MUST BE 1, 2 OR 3



ERR_166_AI_CONFIG_WRONG_AI_SELECTED:	AI CONFIGURATION, WRONG ANALOG INPUT SELECTED
ERR_167_AI_CONFIG_WRONG_SYNTAX:	AI CONFIGURATION, WRONG SYNTAX
ERR_168_AI_CONFIG_WRONG_TYPE:	AI CONFIGURATION, WRONG TYPE SELECTED
ERR_169_AI_CONFIG_WRONG_CALIBRATION_VALUE:	AI CONFIGURATION, WRONG CALIBRATION VALUE
ERR_170_TREND_DIGITAL_DATABASE_POINT_WRONG_SYX:	TREND, DIGITAL DATABASE POINT WRONG SYNTAX



CANADA - Main Office 25 Interchange Way Vaughan, ON L4K 5W3 Tel: (888) 660-4655 (905) 660-4655 Fax: (905) 660-4113 U.S.A 4575 Witmer Industrial Estates Niagara Falls, NY 14305 Tel: (888) 660-4655 (905) 660-4655 Fax: (905) 660-4113 TECHNICAL SUPPORT North America Tel: (888) Mircom5 (888) 647-2665 International Tel: (905) 647-2665

© MGC 2017 Printed in Canada Subject to change without prior notice www.mircomgroup.com