AHill, Mircom'

BUILDING
AUTOMATION
SYSTEM

OpenBAS

eZ HVAC and Building Automation Wizard Joroost Sev:0

M. Mircom: g e PENBAS

HVAC and building automation Wizard

The eZ App programing style for HVAC and building automation is a step forward in the way a solution

to automate buildings is done.

It is designed from the ground up with the application in mind, reliving the user from the tedious job of
having to know the details to accomplish the task of automating mechanical processes that are common
for buildings.

At the bottom of the solution is a rock solid OpenBAS hardware that is field proven for years that has a
rich set of peripherals to get tasks in building automation done in a fast, secure and economical way.

Layered on top of a family of controllers, that runs interactively ladder PLC instructions. This new layer
of multi-language script compiler gets its input from a pre-built and tested solution templates library
that is automatically generated by the App Wizard.

An eZ one step communication port and solution configurator eases the tedious task of having to start

from scratch every time.

As shown on the image on next page the solution provides an entry level building automation designers
with little experience to become proficient and be able to finish an automation solution in minutes,
rather days.

With the added feature that experienced users will not lose control of a powerful set of tools that have
been used for years.

eZ HVAC and building automation Wizard Page 1

M. Mircom: g e PENBAS

e eZ App Wizard
Library of HVAC and
Building automation pre-built Solutions.

Script compiler
Six language plain text
application solution

Networking made easy *
Communicate locally or
over the internet and over industry i ol PLC editor
standard field bus protocols Ly ﬂ Ladder logic on line
= interactive programming

AR T N

Receive SMS —— \m.
text messages for \E <<

Events and alarms ..

ap & Hei oo i @ 1 i

Air
handling
units

OpenBAS family

Of Building automation controllers

Water Roof top VAV boxes Fan & coils Lighting ~ Power ... -nd air Modbus

. . Pumps
chillers units panels metering o iors touch screens P

As seen on the image above, the layered programming interface takes the solution from concept to final
application in a matter of minutes.

Everything starts at the top, in the €Z Application Wizard, where choosing from a library of prebuilt

solutions takes the user by the hand with a series of questions. When everything is answered with the
single push of a button a script is generated in the language preferred by the user.

Next it automatically jumps to the Script compiler, where the user can optionally hand tune the script,
or simply compile and load the solution.

As easy as it sounds, just like a piece of hot apple pie.

A

eZ HVAC and building automation Wizard Page 2

M, Mircom® OpenBAS

Building Automation System

[B
4% OpenBAS-SW-CFGTL Ver: 268.d 23/12/2016 www.mircomgroup.com 1-888-MIRCOMS ComsST:[6,6,0,0,0] EI_‘E
Address for commurications ™ Mo auto update
265 £
i
b4us3 & CoM3
i, e ,
MG L “2000'04200
r . i
Comlogfist - Command View status Labels Exit
I~ Lock COMM # € I Logar
I Autosearch COMM O — A“T‘) 5“';% f:} w
3 o E——— [
Checkcomm. | Info | Statisics | WA RIRD de—" =
EETRET — = wi=J%
COM3 (USB) Ok %\. £ ’E“;&Iﬁ - 5
Wer: NXU-2 68, Hw2 o e S
ks dd T | CHWH T :
avs In seviee: =Schedule | Graphics ‘Web server Easy start
[T UselP [URL or IP add)
. mail] f:}
Device state 1 4 I
oo g
i : Sw. 2.68 -
A, H H Fw. 2.68 7]
2:47_23iDicj2016 PLC Param. setup Configure Password
Controller name:
Script-generated| Wersions m
Active project
__Change | List [c:Prushatabet
v Ao detect
\

Everything starts here by selecting the €Z Start button; this will take you to the newly added screens

that let you choose between a one button communication port setup for industry standard protocols as
either a bus master or slave.

Next is the €Z Application Wizard button that will take us to the library template builder shown on the
next screen.

[z setup ==

One step, basic configuration of currently connected device

Make this device a bus master

Add slave devices to this bus master

Make this device a bus slave ‘

Name inputs and outputs for this device

Wizard App generator for buiding automation

@

Easy HVAC application wizard ‘

Script programming and program loader
B s

Script programming ‘

Change project ‘ Cancel ‘

Finally at the end is a direct access to the Script compiler where the programmer can edit, compile and
download the application.

eZ HVAC and building automation Wizard Page 3

M. Mircom g e PENBAS

So now, because this should be as easy as .Z, 2, and 3 let’s get started by building a typical

application using the @Z Application Wizard.

App Wizard generator for building automation and HVAC application

Generic HYAC and building control network applications ® Canicel

I Gemerate scripts in enalish (default script languags)

— Application specific solutions

Air handling units (AHU) applications | Fan and coil (FC) applications Lighting control (LC) applications
L "
("
Roof top units (RTU) applical ExWin A — &J awer metering (PM) applications
Chiller (Cooled water) applica |"/ '\'l HVAC App wizard generated all necessary script files. ators and air extractors applications

k. e
Go to script compiler and centroller loader?

Pump contral and sequencing apj)| |2 touch screen application via Modbus

e-mail generator for alarms an: Protocol conversion applications

By selecting from the pre-built libraries (Step 1) and answering some questions, now with this

information the €Z Application Wizard generates all the necessary files (Step 2) and asks whether you

want to compile and load the solution to the controller (Step 3).

It opens the generated solution for you to examine and optionally hand tune names, logic et. Here is an
example of a typically generated solution.

eZ HVAC and building automation Wizard Page 4

M. Mircom

OpenBAS

Building Automation System

By following the 1, 2, 3 step solution, we ended up in the “Script compiler”. For experienced
programmers this is heaven, as you can use the integrated “Script template generator” for the
OpenBAS family of controllers and use pre-built templates that already include all the features that
each controller has to offer with a single “push and create” feature as a good starting point. Call it a

handicap if you want.

-
NX script template generator and compiler C:\Prueba\abc\,

S5C)

—Script template generator
[¥ Enable template generator options

[~ Use multiple script and external definition files

I 1 Mumber of script files to create 1-10

Select hardware to use as template

OpenBAS-HV-NX10P 8-UI, 2-AQ, 8-B0 HVAC controller

=l

COpenBAS-HV-NX4A0 0-UI, 4-A0, 0-BO analog output expantion

OpenBAS-HY-NX10P 16-U1, 4-A0, 16-B0 (+ 1 NX10P slave)
OpenBAS-HY-NX10P 24-U1, §-A0, 24-B0 (+ 2 NX10P slaves)
OpenBAS-HV-NX10P 32-UI, 8-A0, 32-B0 (+ 3 NX10P slaves)
| OpenBAS-HV-NX10P 40-UI, 10-AQ, 40-B0O (+ 4 NX10P slaves)
|, OpenBAS-HV-NX12R 14JI, 0-AQ, 12-B0 Lighting controller

OpenBAS-HV-NX12R 2-UI, 0-AQ, 24-B0 (+ 1 MX12R slave)
OpenBAS-HV-NX12R 3-UI, 0-AQ, 36-BO (+ 2 NX12R slaves)

OpenBAS-HY-NXSF 84JI, 0-AQ, 080 input exp. with TC current meter +8 BI's

OpenBAS-HY-MXHALF 401, 2-A0, 4-BO small HVAC contraller
0 BAS-HV-X10P 8-UI, 2-A0, 8-BO HVAC controller

Cancel

—Select what to add when creating templates
¥ Add comments and section separators
¥ Add basic variable definition templates
¥ Add sample code with all available instructions
¥ Add all variable definition templates

[~ Add variable definitions for dual core processor
[Add e-mail messaages templates

[~ Add SM5 text messagees templates

But because | don’t want to bore you with “advanced stuff” right now, let’s focus on the 1, 2, 3 solution.

1. Select from library of pre-built applications

2. Generate the solution

3. Compile and download the solution

DONE !
DONE'!
DONE!

" s

NX script template generator and compiler C:\Pruebal\abc\,

Stript template generator
I Enable tmplate generator options

[OpenBASHU-i0P 8-, 2-40, 8:80 HVAC controler |

™ 0verwrite existing fles with

ExWin

S

h Seript compiled with no errors.

Script compile and download

Open existing script file(s) for eciting

- Intermediate output files generated during compile
[Z Creste detailed PLC sdder fisti
1™ Open generated PLC instructior
I Open al areated intermediate files for viewing

)

after compile

~Downoad to controlier after compiing scripts -

o] to controller
Fo 1cHons

D 5y A =
P
~ ExWin [—‘_‘-J
[

Compile scripts and download to contraller e -
i @& oo you want to download controller?
E . 9 i it it
No
eZ HVAC and building automation Wizard Page 5

M. Mircom

OpenBAS

Building Automation System

So now we are done, loading the application takes between a couple of seconds to a pair of minutes

depending on the length of the program and the generated database objects, and finally a last question,

the eZ Application Wizard asks if we want to view the loaded solution in the PLC editor and takes us

directly there.

ExWin

==

4@C% Program loaded to contraller.

b

4
Do you want to open the PLC editor?

s ~
Logical blocks PLC LOGIC-1.400 =5
r~ Block #1400 i~ Create ni 5 h
e I™ Expanded remote points active I Core 2 active EEnRERRE v Auto Hl?f:l el Eaa[gk Stat E—
truct]
4 1| | ms [1nt] 51| PLCowent=[11 FLC Feed | OnOffle Mociy | UL T ¢ 1% 3
+ Xl bath instuctions
TYPE=4[0R | Search: [41] .
RES_BIT: 2381 =0 [resBit1000 valict1100] T G et Search 41-60
OP1:[RES_BIT-240]1 .
OPZ[RES BIT-238]| O | instactions @ Function W Search END autc
OP3:[NULL-D1 -
OP4: % NULL-O1 }” ::I Subroutine call IDH
= e € Warisle
On Ifa=s PP Lishing gop € Search inresul
TN R BIT2a0 R BIT:238 — £ Search in operands
n—'I_J>_ 6 Tirnet instruction O eyt it
- H ﬂ+ g Output assignament Type
I’_R'_d Proportional contral INULL ;I
R BIT-228
’.“ Altemate and paralleling Number (0=any]
e anu !
55 and RTU stage [HWAC)
E Hour counter Storage
- | 5ection label Librany espart E
g Iat:
User special instructions srpigal
Efjdl | Program END instuction
r~ Optians
& |instruction disable Generate PLC documentation |
G| ¥ Stop when finding 1st.
netruction re-enable END instuction
2 | pelate instruction ¥ PLE ladder diagram document
. I ¥ Check output assignament
T2\ | Copy instiuction block I View on save
Copy FAlu_tD |nc|enl'5ntHE5 Labels I Adjugt | View 5t | Dpsﬂxl Esit | ‘i*t- Move instruction block Save o disk |
Op-1.4 - A
Reading instruction 41... A
Paste Paste ++ | @ Variable © Name Seach [OR]>>> [41] 29| Delete instruction black Fiestore from disk |

As | promised on the beginning, is like a slice of fresh backed apple pie.

—h

=l

eZ HVAC and building automation Wizard

Page 6

M, Mircom

OpenBAS

Building Automation System

Finally in the “Ladder diagram PLC editor” you can use the standard tools that have been available for
more than half a decade to edit, document and fine tune the solution.

.| LOGIC_BLOCKS.TXT - Notepad
P

File Edit Format View Help

COMPARE <

TEMPERATU
RE I

KByte-23

RES_BIT-240
R

R = A<B

[
FAN_SPEED
_COMMAND |

<INSTR#-040>
COMPARE ==

RES_BIT-239
CRrRD

R = A==B

RES_BIT-238
CrRD

As you can see the newly added tools simplify building automation. Just around the corner is the

“Network builder” that with “drag and drop” will allow you to “sketch or draw” your networking

solution and with the push of a button create a full networking project with ready to download solution.

r-eZ Network Wizard generator for building application solutions @1
‘ X 10P ‘ X 10D NXHALF NX12R. HXCORE ‘ NX4AO MXSMS NXLEARN | l ETH3 VAVFC l RF433R ‘ WLSTH | USBCHY
Tab1 [Tab2 [Tab3 [Tab4 [Tabs
eZ HVAC and building automation Wizard Page 7

OpenBAS

Building Automation System

M, Mircom

This is how typically a “Script” looks like, remember it can be written in English, French, Spanish, Italian,
German and Dutch, and the integrated Tower of Babel language converter will take the tedious and
nauseous work of language translation away from you.

-

ﬁ script_Litxt - Notepad

=Nach X)

File Edit

ENGLISH
// English is default script compiler Tanguage, by eZ App Wizzard

Format View Help

»

SELLIT T EEET L LT iiiriiiiiiiiiiires
/ Fan and coil application by eZ HVAC App Wizard

;!!N/’/’/’/’/!!ffff/’/’/’/’/’/’/NNNNHHHN!NNH

variable naming
DEFINE AI_1 TEMPERATURE
DEFINE BO_1 COOLING_VALVE
DEFINE BO_2 HEATING_VALVE
DEFINE BO_3 FAN_LOW_SPEED_OUTPUT
DEFINE BO_4 FAN_MED_SPEED_OUTPUT
DEFINE BO_5 FAN_HIGH_SPEED_OUTPUT
DEFINE ADB_1 FAN_SPEED_COMMAND // 0 = off, 1 = Low, 2 = Med, 3 = High
DEFINE O FAN_OFF
DEFINE 1 FAN_LOW
DEFINE 2 FAN_MED
DEFINE 3 FAN_HIGH

;!!N/’/’/’/’/!!ffff/’/’/’/’/’/’/NNNNHHHN!NNH

/ Program start

S/ The fan speed command ouputs are controlled by multistate setpoint: FAN_SPEED_COMMAND

[FAN_CONTROL]

// The valves will only operate if the fan is running

[VALVE_CONTROL]

// cooling valve control]

IF TEMPERATURE > 25 AND FAN_SPEED_COMMAND !'= OFF THEN COOLING_WALVE = ON

IF TEMPERATURE =< 22 OR FAN_SPEED_COMMAND = 0 THEMN COOLING_VALVE = OFF

// Heating wvalve control]

IF TEMPERATURE IS5 =< 18 AND FAN_SPEED _COMMAND IS NOT = OFF THEN HEATING_VALVE = ON
IF TEMPERATURE IS5 > 22 OR FAN_SPEED_COMMAND = O THEN HEATING_WALVE = OFF

END

4

IF FAN_SPEED_COMMAND = FAN_OFF THEN % £
FAN_LOW_SPEED_OUTPUT = OFF ALSOD
FAN_MED_SPEED_OUTPUT = OFF ALSD
FAN_HIGH_SPEED_OUTPUT = OFF

IF FAN_SPEED_COMMAND = FAN_LOW THEN
FAN_LOW_SPEED_OUTPUT = ON ALSD
FAN_MED_SPEED_OUTPUT = OFF ALS0D
FAN_HIGH_SPEED_OQUTPUT = OFF

IF FAN_SPEED_COMMAND = FAN_MED THEN %
FAN_LOW_SPEED_OUTPUT = OFF ALSOD
FAN_MED_SPEED_OUTPUT = ON ALSD
FAN_HIGH_SPEED_OUTPUT = OFF

IF FAN_SPEED_COMMAND = FAN_HIGH THEN %
FAN_LOW_SPEED_OUTPUT = OFF ALSD
FAN_MED_SPEED_OUTPUT = OFF ALS0D
FAN_HIGH_SPEED_OUTFUT = ON

eZ HVAC and building automation Wizard

Page 8

M, Mircom g e PENBAS

OpenBAS

Script compiler

User’s guide

eZ HVAC and building automation Wizard Page 9

M. Mircom g e PENBAS

Script compiler user’s guide

The script compiler is a language that converts plain text into instructions that can be executed by the
OpenBAS controllers. This language follows a syntax that will be described in the following sections and
can be entered in the following ways:

e Manually following the syntax described in this document.
e Automatically generated by the HVAC AppWizard.
e Using templates generated by the script compiler template generation.

Regardless of the way the script was initially generated it can always be edited using any standard text
editor as long as it is saved as PLAIN TEXT with no formatting such as added in Word or other rich text
editors. Below is a diagram describing the creation of the script files and the compilation process.

File (s) Description Application
script_autoRun.TXT Script generated by HVAC
App wizard in english. =) .
P eZ App Wizard
' Library of HVAC and

script_L.TXT Translated script from english to any Building automation pre-built Solutions.

other language as selected by the user’s
language settings.

eZ App Wizard generated
script source files

“ie|
li
|!||

Script compiler &

® script_1.TXT Optionally the script template generator can create from 1

o — and up to 10 empty template script files to better organize

g " long projects and enforce program structure, by placing template generator
9 different sections or logic in different files. . .

2 & Six language plain text
= - Definiti ional . . s

S script_def. TXT efinitions also can be optionally moved to an external appllcatlon solutlon

definition file to leave the script files only with logic code to
make them cleaner and easier to read.

Pre-processed file, merges all source script and definition files
into a single file and breaks each line into tokens.

PLC editor & loader

Ladder logic on line
interactive programming

Post-processed file creates PLC instructions and directives.

Linker file resolves jump and calls

Intermediate
files

Map file contains al objects created in an ordered list

The OpenBAS Database files
containing the following:

e Setpoints 32, 16 and 8 bit types ! openBAs famlly

¢ Calibration values Of Building automation controllers
®Schedules

e Tag ID labels

* PLC logic

e Remote points

* Wireless points

* System configuration for
communication ports

All these files are automatically
loaded to the controller is the
download option is selected when
prompted.

OpenBAS
Database files generated by compiler

MR - -

eZ HVAC and building automation Wizard Page 10

M, Mircom® OpenBAS

Building Automation System

As can be seen, the flow is as follows; the eZ App wizard generates based on the user preferences a

pre-built and pre-tested solution that can be directly compiled and loaded to the controller. It does so
by generating a pair of files:

script_autoRun.txt which is a script file with the user selected options that is generated in the script’s
native language which is English.

From here the language translator generates the script_1.txt file that if the user selects will be
translated to the user’s preferred language. Only keywords are translated, the names of the variables
are presented to the user prior to generating the scripts in English as he or she can manually translate
their names to something meaningful for the application in the desired language.

When the eZ wizard is invoked for the first time, will ask if we want to use:
e The current project
e An already existing project
e A new project

r 1
Confirm to overwrite files in current project @

The eZ setup, App Wizard and Script compiler will overwrite current project files.
Is this accptable, or you want to create a new project?

C:\Prueba’uyz!,

. 55 |

Use current project Select an existing project Create a new project

Once the selection is done, select the HVAC application wizard to start creating the application.

Wizard App generator for building automation

Cs)

Easy HVAC application wizard

Here a screen showing the different type of pre-built applications will appear. From this screen the user
can select if the languages to be created will be translated by checking the language select checkbox, if
English is selected the checkbox is disabled and no translation will take place.

eZ HVAC and building automation Wizard Page 11

Wi, Mircom: OpenBAS

Building Automation System

F B
App Wizard generator for building automation and HVAC application u
Generic HYAC and building control network applications ® Cancel
I ¥ Generate scripts in english {default script Ianguage)l
— Application spedfic solutions
Air handling units (AHU) applications Fan and coil {FC) applications Lighting contral (LC) applications
Roof top units (RTU) applications Variable air volume (VAY) applications Power metering (FM) applications
Chiller (Cooled water) applications Wireless thermostats applications Ventilators and air extractors applications
Pump control and sequencing applications Wired R5-485 thermostat applications Delta touch screen application via Modbus
e-mail generator for alarms and events SMS message generator for alarms and events Protocol conversion applications
—

Once an application is selected, a couple of screens will sequentially pop up showing first, the
communication features, then the operation modes and finally the trend information.

' ™y
eZ App Wizard Q&A =3

—Communication features

" standalone contraller —Slave protocol
" Networked controller as slave ¢ Opto-22 ¢ N2-Open ¢ Modbus ¢ BACnet
" Networked controller as master
I 1 Slave address
% Networked controller as slave and master

—Master protocol
% opto-22 " N2Open " Modbus {7 BACher
[~ Add Ethernet network controller [” Use dual core

[~ Add SMS text message generator v Add remote points wired examples

V¥ Add remote points wircless examples

—Operation modes

—Schedule of operation

[Runs always, 24/7 ls_ : l? to l? : I? [sunday

v
¥ Runs based on schedules [v Monday

¥ Tuesday
¥ Runs with local external enable W Wednesday
¥ Runs with remote command [V Thursday
V¥ Friday
[saturday
™ Holiday

—Trend information

¥ Create a graphic with trend data I 15 min, 'I Sampling time
Mext === | Cancel |

e ———————————————

eZ HVAC and building automation Wizard Page 12

M. Mircom: g e PENBAS

eZ Name inputs and outputs =
Universal inputs Binary outputs Analog outputs
BI_1 |RUN_EXT_ENABLE [~ Analog Bo_1 | Ag_1 [AcTuaToR
,
AL2 |TEMPERATURE Config. emfehl 0.2 202 | ‘Ana\ctg input configuration ﬂ
A1_3 [PRESSURE Config. | ¥ Analog BO_3 AO_3 = Select type of analog input
2 1kSI_°C Jf 1000 ohms Silicon (C) hd

BI_4 [~ analog BO_4 AD_4
The value is an offset (+/-)
Temperature Sensor 1000 Ohms
BI_S [Analog BO_S AO_S 0 e zﬁc Silicone,

The DIP-SW must be ON.

The offeet value is added or subtracted
ms[™ Analog sos[a0s from the read value.
BI_7 ’7 I~ Analog BO_7 ’7 A0_7
ms| I~ Analog sos[A0_8 ok
s ™ Analog sos[A0_9 —
BI_10 ’7 [~ Analog BO_10 ’7 AO_10
<ex ESs ok Exit ‘ {

In this dialog box the 1I/0 names can be edited, as well as the universal inputs can be selected as analog
or digital, and their default configuration can be set.

f Setpoint M-‘ [Stages [ﬂ-‘

Setpoint Stages

22.5 2

Prop.band

1.5

Optionally depending on the application selected, more screens to fill parameters such as; set points,
number of stages etc., will keep showing until all required data is gathered, at which point the script will
be created and optionally translated.

After this step, the script compiler is automatically invoked. All the previous steps of the eZ App wizard
can be skipped if the user wants to manually create the script files or copy them from a previous project
and manually modify them. Optionally also the script compiler has a script template generator that can
generate one or multiple template files to better organize the whole project. Also an external definition
file can be added to the project, so definitions common to all script files can be located there. This way
the script files will be less cluttered and contain only logic sentences describing the program.

eZ HVAC and building automation Wizard Page 13

M, Mircom

OpenBAS

Building Automation System

The script compiler needs at least one source file that must be named script_1.txt. If additional files are
added to the project they must be named sequentially script_2.txt and up to script_10.txt. If the
external definition file is included to the project, it must be named script_def.txt.

If the script files are in a language other than English, the first line of either script_def.txt if it exists or
script_1.txt must contain the language directive or an error will be generated because the keyword’s

language will be undefined. These language directives are as listed in the following table:

Language selector | ENGLISH FRENCH

SPANISH

GERMAN

ITALIAN

DUTCH

Alternate FRANCAIS

ESPANOL

DEUTSCH

ITALIANO

NEDERLANDS

Both the script compiler section as well as the template generator section are depicted on the picture
below. By default the template generator section is disabled, but can be enabled by checking the

“Enable template generator” checkbox.

-

NX script template generator and compiler C\Pruebaluyzh,

==

Script template generator
[¥ Enable template generator options

[V Use multiple script and external definition files

1 Mumber of script files to create 1-10

Select hardware to use as template

|OpEnBAS-HUNX 10F 8-UI, 2-AO0, 8-BO HVAC controller

[Overwrite existing files without asking for confirmation

Generate initial script template file(s)

Script compile and download

Open existing script file(s) for editing

D DfE) y7

Compile scripts and download to controller

I Use small stack for RES_BIT (overlapped)

Cancel

Select what to add when creating templates

v add comments and section separators

[v add basic variable definition templates

[v add sample code with all available instructions
W Add all variable definition templates

[Add variable definitions for dual core processor

[Add e-mail messaages templates

[Add SMS text messagees templates

I

[Open generated PLC instruction file after compile

Intermediate output files generated during compile

[~ Open all created intermediate files for viewing

Downoad to controller after compiling scripts

[v Download generated database to controller
[V Download generated PLC instructions

[Force initiglization of undedared setpaints

v Initialize created setpoints

[+ Initialize created text lables with ID s

[Initialize created schedules

¥ Initialize created trend with graphics

v Initilize created remote points

[v Initialize created communication ports settings
v Initialize created calibration for analog inputs

eZ HVAC and building automation Wizard

Page 14

M, Mircom g e PENBAS

If the user wants to edit the existing file(s) there is a button that opens all the existing script and the
optionally definition files at once.

The checkboxes to the right of this button allow the intermediate generated files to be opened after the
compile process for viewing. They usually are not shown if compile goes without errors, if however any
syntax of declaration error exists, the intermediate files that have already been processed and created
will be opened.

At the point where an error is found during the compiling process, an error text will be added to the
generated intermediate file(s) giving an error code and a brief explanation of the kind of error found. At
the end of this document, in the appendix named “compiler errors”, a comprehensive list with all the
errors and their possible solutions can be found.

The “Compile scripts and download to controller” button does just what its name implies, compiles the

script, and by generating the intermediate files one after the other at the end creates an OpenBAS
database that will be loaded to the controller automatically.

To the right of this compile button, a group of checkboxes allows the user to manually select what is to
be downloaded. By default all created database objects by the compile process are downloaded to the
controller.

This compile and download process takes between a couple of seconds to a couple of minutes
depending on the size of the program and the created database objects.

Once the whole process is completed, the script compiler asks if you want to proceed to the PLC editor
to view and optionally fine tune and debug the program online.

rExWin ———

| Program loaded to controller.,

" Do you want to open the PLC editor?

The intermediate LINK and MAP files contain the source code as well as the generated PLC instructions

so the user can refer to each section of his or her source file and see what was created. The next section
of this manual will explain the script compiler syntax.

eZ HVAC and building automation Wizard Page 15

M, Mircom g e PENBAS

Before proceeding to the script compiler in detail the following tables describe the database objects and
the keywords that can be used in each of the supported languages.

Database objects table.

Analog inputs 1-40 Al_x EA_x EA_X AE_x 1A_Xx Al_x
Binary inputs 1-40 Bl_x EB_x EB_x BE_x IB_x Bl_x
Analog outputs 1-10 AO_x SA_x SA_x AA_x UA_x AU_x
Binary outputs 1-60 BO_x SB_x SB_x BA_x UB_x BU_x
EEprom 32 bits 1-100 ADF_x
EEprom 16 bits 1-100 ADI_x
EEprom 8 bits 1-100 ADB_x
Lighting groups 1-20 LG_x
RAM result 1 bit 1-255 RES_BIT_x
RAM result 32 bit ‘1-40 RES_FLT_x
Timers ‘116 TMR x
TIMER_x
Remote registers 1-50 RMT_x
REMOTE_x
Remote reg. exp 51-255 RMT_RES_x
Integer constants 0-253 KBYT x
KBYTE_x
Float constants any float value K_FLT x
K_FLOAT x

Note that the English versions of the hardware 1/O will always be available, so are the keywords, so a
user writing for example the script in French can freely use English and French keywords and database
objects intermixed.

On the next six pages the keyword list for the different languages is shown. Note that accents and other
nonstandard characters have been replaced with standard non accented ASCIl characters to make
language translation easy to work with.

All words are case insensitive so the user can write in capital or non-capital or mixed characters. For
some keywords and database objects there are shorthand versions of some words to make script
programming easier.

eZ HVAC and building automation Wizard Page 16

W, Mircom:

OpenBAS

Building Automation System

Keywords table 1 of 6

s 5 € &
KWD_NULL NULL NULL NULL
KWD_IF IF Sl N
KWD_ELSE ELSE AUTRE CASO_CONTRARIO
KWD_THEN THEN PUIS ENTONCES
KWD_JUMP JUMP SAUT BRINCA
KWD_CALL CALL APPEL LLAMA
KWD_SCRIPT_1 SCRIPT_1 SCRIPT_1 SCRIPT_1
KWD_SCRIPT_2 SCRIPT_2 SCRIPT_2 SCRIPT_2
KWD_SCRIPT_3 SCRIPT_3 SCRIPT_3 SCRIPT_3
KWD_SCRIPT_4 SCRIPT_4 SCRIPT_4 SCRIPT_4
KWD_SCRIPT_5 SCRIPT_5 SCRIPT_5 SCRIPT_5
KWD_SCRIPT_6 SCRIPT_6 SCRIPT_6 SCRIPT_6
KWD_SCRIPT_7 SCRIPT_7 SCRIPT_7 SCRIPT_7
KWD_SCRIPT_8 SCRIPT_8 SCRIPT_8 SCRIPT_8
KWD_SCRIPT_9 SCRIPT_9 SCRIPT_9 SCRIPT_9
KWD_SCRIPT_10 SCRIPT_10 SCRIPT_10 SCRIPT_10
KWD_SEC SECONDS SECONDES SEGUNDOS
KWD_SEC_1_10 SEC_1 10 SEC_1 10 SEG_1 10
KWD_RUN RUN COURIR CORRE
KWD_LOAD LOAD CHARGER CARGA
KWD_IS IS ETRE ES
KWD_NOT NOT NON NO
KWD_EMRG_STOP EMRG_STOP ARRET_D_URGENCE PARO_EMERG
KWD_CMP_LT < < <
KWD_CMP_LET <= <= <=
KWD_CMP_GT > > >
KWD_CMP_GET >= >= >=
KWD_ASSIGN = = =
KWD_CMP_NOT_EQUAL 1= 1= =
KWD_CMP_EQUAL == == ==
KWD_ADD + + +
KWD_SUBSTRACT - - -
KWD_MULTIPLY * * *
KWD_DIVIDE / / /
KWD_MIN MIN MIN MIN
KWD_MAX MAX MAX MAX
KWD_AVG AVG MOYENNE PROMEDIO
KWD_ADD_ASGN += += +=
KWD_SUB_ASGN -= -= -=
KWD_DIV_ASGN = /= /=
KWD_MUL_ASGN *= *= *=
KWD_ON ON ALLUME ENCENDIDO
KWD_OFF OFF ETEINDRE APAGADO
KWD_OPEN OPEN OUVERT ABIERTO
KWD_CLOSED CLOSED FERME CERRADO
KWD_TRUE TRUE VRAI VERDADERO
KWD_FALSE FALSE FAUX FALSO
KWD_DEFINE DEFINE DEFINIR DEFINE
KWD_DEF DEF DEF DEF
KWD_TIMER TIMER MINUTEUR TEMPORIZADOR
KWD_OSCILATOR OSCILATOR OSCILLATEUR OSCILADOR
KWD_FREQUENCY FREQUENCY FREQUENCE FRECUENCIA
KWD_AND AND ET Y
KWD_NAND NAND ET_INVERSE Y_NEGADO
KWD_OR OR ou 0]
KWD_NOR NOR OU_INVERSE O_NEGADO
KWD_XOR XOR XOR O_EXCLUSIVO
KWD_NXOR NXOR XOR_INVERSE O_EXCLUSIVO_NEGADO
KWD_INVERT INVERT INVERSER INVERTIR
KWD_AND_OR AND_OR ET_OU Y O

eZ HVAC and building automation Wizard

Page 17

W, Mircom:

OpenBAS

Building Automation System

Keywords table 2 of 6
KWD_AND_NOR AND_NOR ET_OU_INVERSE Y_O_NEGADO
KWD_SET SET SET FUUAR_A_1
KWD_RESET RESET RESET FIUAR_A_O
KWD_INSIDE INSIDE INTERIEUR DENTRO_DE
KWD_OUTSIDE OUTSIDE EXTERIEUR FUERA_DE
KWD_LT_GROUP LT_GROUP GROUPE_D_ECLAIRAGE GRUPO_ILUM
KWD_PROP_CTRL PROP_CTRL CONTROLE_PROPORTIONNEL CONTROL_PROP
KWD_TOTALIZE TOTALIZE TOTALISATEUR TOTALIZADOR
KWD_HOUR_CNT HOUR_COUNTER COMPTEUR_D_HEURES HOROMETRO
KWD_HVAC_STAGE HVAC_STAGE ETAPE_HVAC ETAPA_HVAC
KWD_ALTERNATE ALTERNATE ALTERNER ALTERNADO
KWD_SCHEDULE SCHEDULE CALENDRIER HORARIO
KWD_TREND TREND TENDANCE TENDENCIA
KWD_REMOTE REMOTE ELOIGNE REMOTO
KWD_WIRELESS_LINK WIRELESS_LINK LIAISON_SANS_FIL ENLACE_INALAMBRICO
KWD_COMM COMM COMM COMM
KWD_E_MAIL E_MAIL E_MAIL E_MAIL
KWD_SMS_TEXT SMS_TEXT TEXTE_SMS SMS_TEXTO
KWD_ALSO ALSO AUSSI TAMBIEN
KWD_WITH WITH AVEC CON
KWD_ADD_T ADD ADDITION SUMA
KWD_SUBSTRACT_T SUBSTRACT SOUSTRACTION RESTA
KWD_MULTIPLY_T MULTIPLY MULTIPLICATION MULTIPLICACION
KWD_DIVIDE_T DIVIDE DIVIDE DIVISION
KWD_START START DEMARRER ARRANQUE
KWD_STOP STOP ARRETEZ PARO
KWD_SUB_BEGIN SUB_BEGIN SUB_DEMARRER SUB_INICIO
KWD_SUB_END SUB_END SUB_FIN SUB_FIN
KWD_END END FIN FIN
KWD_HYSTERESIS HYSTERESIS HYSTERESE HISTERESIS
KWD_START_PLC START_PLC DEPART_PLC INICIO_PLC
KWD_DAY DAY JOUR DIA
KWD_WEEK WEEK SEMAINE SEMANA
KWD_MONTH MONTH MOIS MES
KWD_PERIOD PERIOD PERIODE PERIODO
KWD_VALUE VALUE VALEUR VALOR
KWD_INITIALIZE INITIALIZE INITIALISER INICIALIZA
KWD_PV PV VP VP
KWD_SP SP CONSIGNE P_A)
KWD_PB PB B_PROP B_PROP
KWD_INTEG INTEG INTEG INTEG
KWD_EEPROM EEPROM EEPROM EEPROM
KWD_PLC_COUNTER PLC_COUNTER AJUSTER_INSTRUCTION_PLC AJUSTE_INSTRUCCION_PLC
KWD_ON_CHANGE ON_CHANGE SUR_LE_CHANGEMENT AL_CAMBIAR
KWD_LAST_PERIOD LAST_PERIOD DERNIERE_PERIODE ULTIMO_PERIODO
KWD_PARTIAL_KW PARTIAL_KW PARTIELLE_KW PARCIAL_KW
KWD_PARTIAL_ACC PARTIAL_ACC PARTIELLE_ACCUM PARCIAL_ACUM
KWD_SAMPLE_COUNT SAMPLE_COUNT NUMERO_ECHANTILLON NUMERO_MUESTRAS
KWD_ALT_OUTPUT ALT_OUTPUT ALT_SORTIE ALT_SALIDA
KWD_ALT_STAGES ALT_STAGES ALT_ETAPES ALT_ETAPAS
KWD_ALT_LEADER ALT_LEADER ALT_LEADER ALT_LIDER
KWD_ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC

KWD_ALT_TMR_NEXT_STAGE

ALT_TMR_NEXT_STAGE

ALT_TM_SUIV_ETAPE

ALT_TM_SIG_ETAPA

KWD_ALT_TMR_ALARM

ALT_TMR_ALARM

ALT_TM_ALARME

ALT_TM_ALARMA

KWD_ALT_EXT_ENABLE

ALT_EXT_ENABLE

ALT_ACTIV_EXT

ALT_HABIL_EXT

KWD_ALT_FEEDBACK

ALT_FEEDBACK

ALT_RETOUR

ALT_RETROALIM

KWD_ALT_PARALLEL

ALT_PARALLEL

ALT_PARALLELE

ALT_SIMULTANEO

KWD_PARTIAL_COUNT

PARTIAL_COUNT

COMPTE_PARTIEL

CUENTA_PARCIAL

KWD_COOLING

COOLING

REFROIDISSEMENT

ENFRIAMIENTO

KWD_HEATING

HEATING

CHAUFFAGE

CALEFACCION

KWD_TMR_MINIMUM_ON

TMR_MINIMUM_ON

TMR_MIN_ALLUMER

TMR_MINIMO_ENC

eZ HVAC and building automation Wizard

Page 18

W, Mircom:

OpenBAS

Building Automation System

Keywords table 3 of 6

Keyword

g

€

=

KWD_TMR_MINIMUM_OFF

TMR_MINIMUM_OFF

TMR_MIN_ARRET

TMR_MINIMO_APAG

KWD_TIMER_INTERSTAGE

TMR_INTERSTAGE

TMR_INTERETAPES

TMR_INTERETAPAS

KWD_STAGE_RUN STAGE_RUN VALIDACION_ETAPE PERMISIVO_ETAPA
KWD_INTERVAL_MINUTES INTERVAL_MINUTES INTERVALLE_MINUTES INTERVALO_MINUTOS
KWD_READ_COIL READ_COIL READ_COIL READ_COIL

KWD_READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

KWD_READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

KWD_READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

KWD_ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

KWD_BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

KWD_NX_SLAVE NX_SLAVE NX_ESCLAVE NX_ESCLAVO
KWD_WLS_TEMP_C WLS_TEMP_C WLS_TEMP_C WLS_TEMP_C
KWD_WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F
KWD_WLS_REL_HUM WLS_REL_HUM WLS_HUM_REL WLS_HUM_REL
KWD_WLS_MODE WLS_MODE WLS_MODE WLS_MODO
KWD_WLS_FAN_SPEED WLS_FAN_SPEED WLS_VEL_VENTILATEUR WLS_VEL_VENTILADOR
KWD_WLS_KEYBOARD WLS_KEYBOARD WLS_CLAVIER WLS_TECLADO
KWD_WLS_SP_TEMP WLS_SP_TEMP WLS_PC_TEMP WLS_PA_TEMP
KWD_WLS_SP_HUM WLS_SP_HUM WLS_PC_HUM WLS_PA_HUM
KWD_WLS_SP_T1 WLS_SP_T1 WLS_PC_T1 WLS_PA_T1
KWD_WLS_SP_PB WLS_SP_PB WLS_PC_BP WLS_PA_BP
KWD_WLS_SP_UNOCC WLS_SP_UNOCC WLS_PC_INOCCUPE WLS_PA_DESOC
KWD_WLS_BATTERY_VOLTAGE WLS_BATTERY_VOLTAGE WLS_VOLTAGE_BATTERIE WLS_VOLTAJE_BATERIA
KWD_WLS_AUX_INP WLS_AUX_INP WLS_ENT_AUX WLS_ENT_AUX
KWD_WLS_LINK_TMR WLS_LINK_TMR WLS_TM_LIEN WLS_TM_ENLACE

KWD_WLS_SEC_LINK_LOST

WLS_SEC_LINK_LOST

WLS_SEC_SANS_LIEN

WLS_SEC_SIN_ENLACE

KWD_CONTROLLER_NAME

CONTROLLER_NAME

NOM_CONTROLEUR

NOMBRE_CONTROLADOR

KWD_WLS_GROUP

WLS_GROUP

WLS_GRUPE

WLS_GRUPO

KWD_WLS_ADDRESS

WLS_ADDRESS

WLS_ADDRESSE

WLS_DIRECCION

KWD_DEVICE_ADDRESS

DEVICE_ADDRESS

ADDRESSE_COM

DIRECCION_COM

KWD_PARITY_NONE PARITY_NONE PARITE_SANS PARIDAD_SIN
KWD_PARITY_ODD PARITY_ODD PARITE_IMPAIRE PARIDAD_NON
KWD_PARITY_EVEN PARITY_EVEN PARITE_PAIRE PARIDAD_PAR
KWD_STOP_BIT_0 STOP_BIT_0O BIT_D_ARRET_0 BIT_PARO_O
KWD_STOP_BIT_1 STOP_BIT 1 BIT_D_ARRET 1 BIT_PARO_1

KWD_PROTOCOL_ASCII_TERMINAL

PROTOCOL_ASCI_TERMINAL

PROTOCOLE_ASCII_TERMINAL

PROTOCOLO_ASCII_TERMINAL

KWD_PROTOCOL_OPTO_22_SLAVE

PROTOCOL _OPTO_22_SLAVE

PROTOCOLE_OPTO_22_ESCLAVE

PROTOCOLO_OPTO_22_ESCLAVO

KWD_PROTOCOL_N2_OPEN_SLAVE

PROTOCOL_N2_OPEN_SLAVE

PROTOCOLE_N2_OPEN_ESCLAVE

PROTOCOLO_N2_OPEN_ESCLAVO

KWD_PROTOCOL_MODBUS_SLAVE

PROTOCOL_MODBUS_SLAVE

PROTOCOLE_MODBUS_ESCLAVE

PROTOCOLO_MODBUS_ESCLAVO

KWD_PROTOCOL_BANCET_MSTP

PROTOCOL_BANCET_MSTP

PROTOCOLE_BANCET_MSTP

PROTOCOLO_BANCET_MSTP

KWD_PROTOCOL_022_MASTER

PROTOCOL_OPTO22_MASTER

PROTOCOLE_OPTO22_MAITRE

PROTOCOLO_OPTO22_MAESTRO

KWD_PROTOCOL_MODBUS_MASTER

PROTOCOL_MODBUS_MASTER

PROTOCOLE_MODBUS_MAITRE

PROTOCOLO_MODBUS_MAESTRO

KWD_BAUD_RATE

BAUD_RATE

BAUD

BAUDIOS

KWD_AI_CONFIG

Al_CONFIGURATION

EA_CONFIGURATION

EA_CONFIGURACION

KWD_AI_CALIBRATION

Al_CALIBRATION

EA_ETALONNAGE

EA_CALIBRACION

KWD_SCRIPT_LAST

SCRIPT_END

SCRIPT_END

SCRIPT_END

eZ HVAC and building automation Wizard

Page 19

W, Mircom:

OpenBAS

Building Automation System

Keywords table 4 of 6
KWD_NULL NULL NULL NULL
KWD_IF OB NEL_CASO_QUE ALS
KWD_ELSE SONST ALTRIMENTI ANDERS
KWD_THEN DANN ALORA DAN
KWD_JUMP SPRING SALTARE SPRING
KWD_CALL ANRUF CHIAMATA OPROEP
KWD_SCRIPT_1 SCRIPT_1 SCRIPT_1 SCRIPT_1
KWD_SCRIPT_2 SCRIPT_2 SCRIPT_2 SCRIPT 2
KWD_SCRIPT_3 SCRIPT_3 SCRIPT_3 SCRIPT_3
KWD_SCRIPT_4 SCRIPT_4 SCRIPT_4 SCRIPT 4
KWD_SCRIPT_5 SCRIPT_5 SCRIPT_5 SCRIPT_5
KWD_SCRIPT_6 SCRIPT 6 SCRIPT 6 SCRIPT 6
KWD_SCRIPT_7 SCRIPT 7 SCRIPT 7 SCRIPT 7
KWD_SCRIPT_8 SCRIPT 8 SCRIPT_8 SCRIPT_8
KWD_SCRIPT_9 SCRIPT 9 SCRIPT 9 SCRIPT 9
KWD_SCRIPT_10 SCRIPT_10 SCRIPT_10 SCRIPT_10
KWD_SEC SEKUNDEN SECONDI SECONDS
KWD_SEC_1_10 SEK_1 10 SEC_1 10 SEC_1 10
KWD_RUN LAUF CORRERE LOPEN
KWD_LOAD BELAST CARICARE LADEN
KWD_IS IST SEI IS
KWD_NOT NICHT NO NIET
KWD_EMRG_STOP NOT_HALT ARRESTO_EMERG NOODSTOP
KWD_CMP_LT < < <
KWD_CMP_LET <= <= <=
KWD_CMP_GT > > >
KWD_CMP_GET >= >= >=
KWD_ASSIGN = = =
KWD_CMP_NOT_EQUAL 1= 1= 1=
KWD_CMP_EQUAL == == ==
KWD_ADD + + +
KWD_SUBSTRACT - - -
KWD_MULTIPLY * * *
KWD_DIVIDE / / /
KWD_MIN MIN MIN MIN
KWD_MAX MAX MASSIMO MAX
KWD_AVG DURCHSCHNITT MEDIA GEMIDDELDE
KWD_ADD_ASGN += 4= +=
KWD_SUB_ASGN = = =
KWD_DIV_ASGN /= /= /=
KWD_MUL_ASGN *= *= *=
KWD_ON EINSCHALT ACCENDE AANDOEN
KWD_OFF AUSSCHALT SPENGE UITDOEN
KWD_OPEN OFFEN APERTO OPEN
KWD_CLOSED GESCHLOSSEN CHIUSO DICHT
KWD_TRUE WAHR VERO WAAR
KWD_FALSE VALS FALSO VALS
KWD_DEFINE DEFINIEREN DEFINIRE BEPALEN
KWD_DEF DEF DEF DEF
KWD_TIMER TIMER TIMER TIMER
KWD_OSCILATOR OSZILLATOR OSCILLATORE OSCILLATOR
KWD_FREQUENCY FREQUENZ FREQUENZA FREQUENTIE
KWD_AND UND E EN
KWD_NAND UND_UMDREHT E_ROVESCIATO EN_OMZETTEND
KWD_OR ODER (0] OF
KWD_NOR ODER_UMDREHT O_ROVESCIATO OF_OMZETTEND
KWD_XOR ODER_EXCLUSIF O_EXCLUSIVO OZ_EXCLUSIEF
KWD_NXOR ODER_EXCLUSIF_UMDREHT O_EXCLUSIVO_ROVESCIATO OZ_EXCLUSIEF_OMZETTEND
KWD_INVERT UMDREHT ROVESCIATO OMZETTEND
KWD_AND_OR UND_ODER EO EN_OF

eZ HVAC and building automation Wizard

Page 20

W, Mircom:

OpenBAS

Building Automation System

Keywords table 5 of 6

Keyword @ @ @
KWD_AND_NOR UND_ODER_UMDREHT E_O_ROVESCIATO EN_OF_OMZETTEND
KWD_SET SETZEN SET SET
KWD_RESET ZURUECKSETZEN RESET RESET
KWD_INSIDE INNEN DENTRO BINNEN
KWD_OUTSIDE AUSSEN FUORI BUITEN
KWD_LT_GROUP BELEUCHTUNGSGRUPPE GRUPO_ILUM LICHTGROEP
KWD_PROP_CTRL PROP_BEDIENUNG CONTROLLO_PROP PROP_BEDIENING
KWD_TOTALIZE ZAEHLER TOTALIZZATORE TOTALIZATOR
KWD_HOUR_CNT STUNDEN_ZAEHLER CONTAORE URENTELLER
KWD_HVAC_STAGE HVAC_STUFE STADIO_HVAC HVAC_ETAPPE
KWD_ALTERNATE ALTERNIEREN ALTERNATO AFWISSELEN
KWD_SCHEDULE ZEITPLAN ORARIO DIENSTREGELING
KWD_TREND TENDENZ TENDENZA TREND
KWD_REMOTE FERNPUNKT PUNTO_A_DISTANZA AFGELEGEN
KWD_WIRELESS_LINK DRAHTLOSE_VERBINDUNG COLLEGAMENTO_SENZA_FILI DRAADLOZE_VERBINDING
KWD_COMM COMM COMM COMM
KWD_E_MAIL E_MAIL E_MAIL E_MAIL
KWD_SMS_TEXT SMS_TEXT SMS_TESTO SMS_TEKST
KWD_ALSO AUCH ANCHE 00K
KWD_WITH MIT CON MET
KWD_ADD_T ADDITION AGGIUNGERE TOEVOEGEN
KWD_SUBSTRACT_T SUBSTRAKTION SOTTRAZIONE AFTREKKEN
KWD_MULTIPLY_T MULTIPLIZIEREN MOLTIPLICARE VERMENIGVULDIGEN
KWD_DIVIDE_T TEILEN DIVIDERE VERDELEN
KWD_START STARTEN PARTENZA STARTEN
KWD_STOP STOPPEN ARRESTO STOPPEN
KWD_SUB_BEGIN SUB_BEGIN SUB_INIZIO SUB_BEGIN
KWD_SUB_END SUB_ENDE SUB_FINE SUB_EINDE
KWD_END ENDE FINE EINDE
KWD_HYSTERESIS HYSTERESE ISTERESI HYSTERESIS
KWD_START_PLC START_PLC PARTENZA_PLC BEGIN_PLC
KWD_DAY TAG GIORNO DAG
KWD_WEEK WOCHE SETTIMANA WEEK
KWD_MONTH MONAT MESE MAAND
KWD_PERIOD PERIODE PERIODO PERIODE
KWD_VALUE WERT VALORE WAARDE
KWD_INITIALIZE INITIALISIEREN INIZIALIZZARE INITIALIZE
KWD_PV ISTWERT VP PV
KWD_SP SOLLWERT SP SETPUNT
KWD_PB PB B_PROP PB
KWD_INTEG INTEG INTEG INTEG
KWD_EEPROM EEPROM EEPROM EEPROM

KWD_PLC_COUNTER

PLC_ZAEHLER_SET

PLC_CONTATORE_SET

PLC_TELLER_SET

KWD_ON_CHANGE

BEI_AENDERUNG

SUL_CAMBIAMENTO

OP_VERANDERING

KWD_LAST_PERIOD

LETZTE_PERIODE

ULTIMO_PERIODO

LAATSTE_PERIODE

KWD_PARTIAL_KW PARTIELL_KW PARZIALE_KW PARTIEEL_KW
KWD_PARTIAL_ACC PARTIELL_AKKUMULIERT PARZIALE_ACUMULATO PARTIEEL_GEACCUMULEERDE
KWD_SAMPLE_COUNT PROBENZAEHLUNG CONTEGGIO_CAMPIONI MONSTER_TELLER
KWD_ALT_OUTPUT ALT_AUSGANG ALT_USCITA ALT_UITGANG
KWD_ALT_STAGES ALT_STUFEN ALT_STADIO ALT_ETAPPE
KWD_ALT_LEADER ALT_FUHRER ALT_DIRETTORE ALT_AANVOERDER
KWD_ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC

KWD_ALT_TMR_NEXT_STAGE

ALT_NACHSTE_STUFE

ALT_PROSSIMO_STADIO

ALT_VOLGENDE_ETAPPE

KWD_ALT_TMR_ALARM

ALT_TMR_ALARM

ALT_TMR_ALLARME

ALT_TMR_ALARM

KWD_ALT_EXT_ENABLE

ALT_EXT_FREIGABE

ALT_ABILITAZIONE_EST

ALT_EXT_SCHAKELEN

KWD_ALT_FEEDBACK

ALT_RUCKKOPPLUNG

ALT_RISPOSTA

ALT_TERGUGKOPPELING

KWD_ALT_PARALLEL

ALT_PARALLEL

ALT_PARALLELO

ALT_PARALLEL

KWD_PARTIAL_COUNT

TEILZAEHLUNG

CONTEGGIO_PARZIALE

GEDEELTELIJKE_TELLING

KWD_COOLING KUEHLUNG REFFREDDAMENTO KOELING
KWD_HEATING HEIZUNG RISCALDAMENTO VERWARMING
KWD_TMR_MINIMUM_ON TMR_MIN_EIN TMR_MIN_ACCENDERE TMR_MIN_IN

eZ HVAC and building automation Wizard

Page 21

OpenBAS

Building Automation System

W, Mircom:

Keywords table 6 of 6

@

@

&

Keyword
KWD_TMR_MINIMUM_OFF TMR_MIN_AUS TMR_MIN_SPEGNERE TMR_MIN_UIT
KWD_TIMER_INTERSTAGE TMR_ZWISCHENSTUFE TMR_INTERSTADIO TMR_INTERSTAGE
KWD_STAGE_RUN STUFE_LAUF STADIO_FUNZIONARE ETAPPE_LOPEN
KWD_INTERVAL_MINUTES INTERVALL_MINUTEN INTERVALLO_MINUTI INTERVAL_MINUTEN
KWD_READ_COIL READ_COIL READ_COIL READ_COIL

KWD_READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

KWD_READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

KWD_READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

KWD_ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

KWD_BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

KWD_NX_SLAVE NX_SLAVE NX_SCHIAVO NX_SLAAF
KWD_WLS_TEMP_C WLS_TEMP C WLS_TEMP C WLS_TEMP C
KWD_WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F
KWD_WLS_REL_HUM WLS_REL_FEUCHTIGKEIT WLS_UMIDITA_REL WLS_REL_VOCHTIGHEID
KWD_WLS_MODE WLS_MODUS WLS_MODALITA WLS_MODE

KWD_WLS_FAN_SPEED

WLS_LUFTER_GESCHWINDIGKEIT

WLS_VELOCITA_VENT

WLS_VENT_SNELHEID

KWD_WLS_KEYBOARD WLS_TESTATUR WLS_TESTIERA WLS_TOETSENBORD
KWD_WLS_SP_TEMP WLS_SP_TEMP WLS_SP_TEMP WLS_SP_TEMP
KWD_WLS_SP_HUM WLS_SP_FEUCHTIGKEIT WLS_SP_UMIDITA WLS_SP_VOCHTIGHEID
KWD_WLS_SP_T1 WLS_SP_T1 WLS_SP_T1 WLS_SP_T1
KWD_WLS_SP_PB WLS_SP_PB WLS_SP_PB WLS_SP_PB

KWD_WLS_SP_UNOCC

WLS_SP_UNBESETZ

WLS_SP_DISOCCUPATO

WLS_SP_ONBEZET

KWD_WLS_BATTERY_VOLTAGE

WLS_BATTERIESPANNUNG

WLS_VOLTAGIO_BATTERIA

WLS_BATTERIJ_VOLTAGE

KWD_WLS_AUX_INP WLS_AUX_EIN WLS_AUX_ING WLS_AUX_ING
KWD_WLS_LINK_TMR WLS_LINK_TMR WLS_LINK_TMR WLS_LINK_TMR
KWD_WLS_SEC_LINK_LOST WLS_SEK_KEIN_LINK WLS_SEC_SENSA_COLLEGAMENTO| WLS_SEC_ZONDER_KOPPELING
KWD_CONTROLLER_NAME REGLERNAME NOME_DISPOSITIVO CONTROLLER_NAAM
KWD_WLS_GROUP WLS_GRUPPE WLS_GRUPPO WLS_GROEP
KWD_WLS_ADDRESS WLS_ADDRESSE WLS_INDIRIZZO WLS_ADRES
KWD_DEVICE_ADDRESS REGLERADRESSE INDIRIZZO_DISPOSITIVO CONTROLLER_ADRES

KWD_PARITY_NONE

PARITAT_KEINE

PARITA_NESSUNA

PARITEIT_NONE

KWD_PARITY_ODD

PARITAT_UNGERADE

PARITA_DISPARI

PARITEIT_ONEVEN

KWD_PARITY_EVEN PARITAT SOGAR PARITA_PARI PARITEIT_EVEN
KWD_STOP_BIT_0 STOP BIT 0 STOP BIT 0 STOP_BIT 0
KWD_STOP_BIT_1 STOP_BIT_1 STOP_BIT 1 STOP_BIT_1

KWD_PROTOCOL_ASCII_TERMINAL

PROTOKOLL_ASCII_TERMINAL

PROTOCOLLO_ASCII_TERMINAL

PROTOCOL_ASCII_TERMINAL

KWD_PROTOCOL_OPTO_22_SLAVE

PROTOKOLL_OPTO_22 SLAVE

PROTOCOLLO_OPTO_22_SCHIAVO

PROTOCOL_OPTO_22_SLAAF

KWD_PROTOCOL_N2_OPEN_SLAVE

PROTOKOLL_N2_OPEN_SLAVE

PROTOCOLLO_N2_OPEN_SCHIAVO

PROTOCOL_N2_OPEN_SLAAF

KWD_PROTOCOL_MODBUS_SLAVE

PROTOKOLL_MODBUS_SLAVE

PROTOCOLLO_MODBUS_SCHIAVO

PROTOCOL_MODBUS_SLAAF

KWD_PROTOCOL_BANCET_MSTP

PROTOKOLL_BANCET_MSTP

PROTOCOLLO_BANCET_MSTP

PROTOCOL_BANCET_MSTP

KWD_PROTOCOL_022_MASTER

PROTOKOLL_OPTO22_MEISTER

PROTOCOLLO_OPTO22_MASTER

PROTOCOL_OPTO22_MEESTER

KWD_PROTOCOL_MODBUS_MASTER

PROTOKOLL_MODBUS_MEISTER

PROTOCOLLO_MODBUS_MASTER

PROTOCOL_MODBUS_MEESTER

KWD_BAUD_RATE

BAUD

BAUD

BAUD

KWD_AI_CONFIG

AE_KONFIGURATION

IA_CONFIGURAZIONE

IA_CONFIGURATIE

KWD_AI_CALIBRATION

AE_KALIBRIERUNG

IA_CALIBRAZIONE

IA_KALIBRIERING

KWD_SCRIPT_LAST

SCRIPT_END

SCRIPT_END

SCRIPT_END

eZ HVAC and building automation Wizard

Page 22

M, Mircom g e PENBAS

Detailed keyword usage

The following section gives detailed description in the use of each of the keywords, as well as syntax
rules and example code. Only the English language of the script is given in detail. The keywords can be
substituted by the user selected language if the first keyword of the file is the language selection
keyword.

If the script files are in a language other than English, the first line of either script_def.txt if it exists or
script_1.txt must contain the language directive keyword or an error will be generated because the
keyword’s language will be undefined. These language directives keywords are as listed in the following

table:
Language selector ENGLISH FRENCH SPANISH GERMAN ITALIAN DUTCH
Alternate FRANCAIS ESPANOL DEUTSCH ITALIANO |NEDERLANDS

These keywords besides being in the very first line of the script or definition file, must be alone in the
line, no other additional keywords or comments should be on it.
The following is an example to set the script file language to French:

FRENCH
// Must be first word of first line of First file (DEF or SCRIPT)

Also the French keyword version could be used, it can be in capitals or non-capital letters.

Francais
// Must be the first word in the first line of the first file (DEF or SCRIPT)

Note that the English version of the database names and keywords will always be available, so when a
user writing for example the script in French, he or she can freely mix both languages and use some
English and some French keywords as well as database objects names indiscriminately.

On the preceding pages, the keyword list for the different supported languages is shown. Note that
accents and other nonstandard characters have been replaced with standard non-accentuated
characters to make keyboard input and language translation easy to work with.

All words are case insensitive so the user can write in capital or non-capital or mixed characters. For
some keywords and database objects there exist shorthand versions to make script programming easier.

eZ HVAC and building automation Wizard Page 23

OpenBAS

Building Automation System

M, Mircom

Keyword: DEFINE
Shortcut: DEF
DEFINE DEFINIR DEFINE DEFINIEREN DEFINIRE BEPALEN
DEF DEF DEF DEF DEF DEF

The 'DEFINE' or its shortcut 'DEF' keyword defines equates to be able to call data base objects by user
defined names:

Syntax: DEFINE [DB OBJECT] [optional ‘=' operator keyword to make reading easier]
[NEW LABEL THAT EQUATES TO DB OBJECT BY NAME] 32 bit characters or less.
Underscores are allowed in the label, it is case insensitive

DEFINE BlI_1 ENTRY_DOOR // Standard definition

DEFINE BI_1 = ENTRY_DOOR // Optional =" added for clarity

DEF BI 1 ENTRY_DOOR // Short notation

DEF BI_1 = ENTRY_DOOR // Short notation with optional "=" added for clarity

OpenBAS NX database OBJECTS will be the operands or results in the rest of the equations and can be:

Description Defined as Notes

Analog inputs Al_1 to 40 (shared with binary inputs thru universal inputs)
Binary inputs BI_1 to 40 (shared with analog inputs thru universal inputs)
Analog outputs AO_1 to 10

Binary outputs BO_1 to 60 (41 to 60 are lighting groups)

EEPROM setpoint 32 bits ADF_1 to 100

EEPROM setpoint 16 bits ADI_1 to 100

EEPROM setpoint 8 bits ADB_1 to 100

Lighting groups

Result
Result

System
Remote

bits registers
float registers

timers
points

LG_1 to 20
RES BIT_1 to 255
RES FLT 1 to 40

TMR_1 to 16
RMT_1 to 50

Integer 8 bit constants KBYT_O to 254

Remote points result reg RMT_RES 41 to 255

(remapped to binary outputs 41 to 60)

Used to store results of binary (digital) operations
Used to store results of any other math operations
(255 with dual core)

(32 with dual core)

Wired or wireless operations (255 with dual core)
Used as constants for values between 0 and 254

Used as additional remote points or to store results
of math operations (with dual core)

A table with a visual representation of the full OpenBAS NX database can be found on the next page.

eZ HVAC and building automation Wizard

Page 24

M, Mircom g e PENBAS

Table with OpenBAS NX database objects:

1 @ 100 @ 150 175 200 @ 250 275 300 @ 350 375 400
1..40

e . ;
g] 1.40
v ,
g 1
g 1.10 f
(B0 J|[140 Jareo) ((shingsowin)
{ ADF az | 1..100
{ ADI 160 | 1.100
{ ADB b | 1.100
Copc | 1..400
PLC2 | 1..400)
PLC3 | 1..400)
[Labels | 1..200
{ LeD Lab. | 1..50
1.200
1..400
| Grl. Sched | 1..400
[Res_bit 1.255)
 Res_bit2 1.255)
41..255 D)
% il 140 } 51.255) »
°
)| o | | :
: 2
i K
RMT 1..50 C 51..255 D
| Graphics ||{1.16 Stored in USB2 vault: RES_FLT-41..255 + RMT-51..255)

As seen on the preceding examples, comments can be added anywhere on any line using the double
forward slash characters {//] similar to Visual studio languages such as C, C++, C# etc.

Anything beyond the comment characters will be treated as comments and not processed by the
compiler.

Adding comments to your program can help to better understand the logic or sequence of operation,
there is no limit on how many lines with instructions or comments a script file can have.

The line length is however restricted to 250 characters, if longer lines are needed or if breaking them to
improve readability the backward slash character f\’ can be used. This way the preprocessor will join
lines ending with the ‘\’ character before parsing them and extracting the individual tokens. On the next
page multiline syntax is shown.

eZ HVAC and building automation Wizard Page 25

M. Mircom: g e PENBAS

Sample code in a single line of script

| IF Al_1 > 17.5 AND AO_1 = 25 OR TEMPERATURE <= ADF_1 + 3 THEN BO_1 = ON ALSO BO_2 = OFF |

This is the same code but now using multiple lines using the backward slash character to break the lines
to improve readability.

IF Al 1> 17.5 AND
AO_1 = 25 OR
TEMPERATURE <= ADF 1 + 3
THEN BO_1 = ON
ALSO BO_2 = OFF

\
\
\
\

Also be aware that as in any written language, spaces or tabs are needed to separate the tokens that
make the words, keywords, operators, operands, database objects etc. and make the program readable.

Even while the pre-processor has a token breaker feature so a line such as:

AO_1=ADF_1+3 will be converted to: IAO_1 = ADF_1 + 3|

It is a good practice to write script programs the same way a standard sentence is constructed by placing
spaces between the words that make up the whole sentence.

Also indentation using tabs or spaces is a good programming practice, to make programs more readable
to humans, aligning data vertically as nesting goes into the program logic, helps to visually better
understand a long program.

eZ HVAC and building automation Wizard Page 26

M, Mircom

Keyword:

INITIALIZE

OpenBAS

Building Automation System

G

€

=

@

@

Hq

INITIALIZE

INITIALISER

INICIALIZA

INITIALISIEREN

INIZIALIZZARE

INITIALIZE

Once an EEPROM variable name has been created to alias to a database object, and even without being
named it can be initialized to a given value, this way when the script is compiled, it’s value will be
generated and initialized one time when the generated program is downloaded to the controller.

The syntax to initialize an EEPROM database object is a follows:

Syntax: EEPROM_REGISTER = Value INITIALIZE

Example: ADF_1
ADI_1
ADI_B

22_.5 INITIALIZE // Any valid 32 bit float value
1000 INITIALIZE // Any value from 0..65535
7 INITIALIZE // Any value from 0..255

If labels are previously created using the DEFINE keyword, these names can be used instead, for

example:

Example: DEFINE ADF_1 TEMPERATURE_SET_POINT

TEMPERATURE_SET POINT = 22.5 INITIALIZE // Initialize by name

If the INITIALIZE keyword is not used and only a simple assignment is used, the variable
will be written all the time. For example in the following expression; ADF_1 = 22_5 will assign the
value of 22.5 to the ADF_1 all the time the program is running, so if the user manually adjusts the set
point, it will be automatically be re-written with the 22.5 value while the program is being executed.

But if the INITIALIZE keyword is used as in: ADF_1 = 22_.5 INITIALIZE then the value will only be
assigned when the program is loaded, and then any changes done by the user will not be affected.

There are times under program control that EEPROM values need to be modified. For example in the
following example the set point is only adjusted if there is an event, and this is completely acceptable:

// Will set the value od ADF under a certain condition only
Example: IF Bl _1 = CLOSED THEN ADF_1 = 25.5

Please note an EEPROM register has a write life time of 1,000,000 cycles and repeatedly changing it
under program control will damage the memory cell. In the example above because no damage happens
because the OS takes care to only write EEPROM values when the assigned value changes.

eZ HVAC and building automation Wizard Page 27

OpenBAS

Building Automation System

M, Mircom

Keyword: LT_GROUP
LT_GROUP GROUPE_D_ECLAIRAGE GRUPO_ILUM BELEUCHTUNGSGRUPPE GRUPO_ILUM LICHTGROEP

The 'LT_GROUP' keyword allows to group up to eight binary outputs into a logical group. Even while the
name implies it is used mainly for lighting, it is just an output grouping function, so it can be to turn on
simultaneously any kind of load such as motors, valves, lights, etc. The lighting group can be created
using the following syntax

Syntax: [RESULT REGISTER] = LT_GROUP [OPERAND _1] .. [optional up to 8 operands]

Example: RES BIT 1 = LT_GROUP BO 1 BO. 2 BO 3 B0 4

// Up to 8 binary outputs can be grouped with into
// a single control bit, up to 20 groups can be created

If labels are previously created using the DEFINE keyword for the binary outputs, these names can be
used instead when creating the lighting group, for example:

// Use user defined labels instead of database ID’s to make line more
// readable

Example: DEFINE RES_BIT_1 = SOURCE_OF CONTROL
DEFINE BO_1 = NORTH_CORRIDOR
DEFINE BO_2 = SOUTH_CORRIDOR
DEFINE BO_3 = MAIN_ENTRANCE

[LIGHTING_GR_1]

SOURCE_OF_CONTROL = LT_GROUP NORTH_CORRIDOR \
SOUTH_CORRIDOR \
MAIN_ENTRANCE

END

In the above example we can see how the names for the variables were defined in advance, so the
lighting group can be created with these names instead. Also to note is that indenting is used and the
line where the lighting group is created was broken down to a multiline by using the back slash
character.

One thing to note is that a PLC label called [LIGHTING GR 1] was added before the lighting group
lines. This kind of labels is needed when jumps and calls are used in the program to jump to a label or
call a subroutine by name. A PLC label is created with the limitation that only the first nine characters
will be stored as a PLC label instruction. Even though the label can be up to 32 bytes in size, the same as
any custom defined name or tag ID label.

eZ HVAC and building automation Wizard Page 28

M, Mircom® OpenBAS

Building Automation System

Also note the use of the END keyword, any code after the END keyword will not be added to the
program. If the END label is not used, the compiler will automatically create one virtual END instruction
at the very end of the last used program instruction.

Only subroutines that are explained later in this user guide are allowed to be placed above the last END
instruction where the program ends, because they are called from within the main program loop and so
if a subroutine is found after an END keyword, it will be included in the program.

eZ HVAC and building automation Wizard Page 29

M, Mircom

OpenBAS

Building Automation System

Keyword: END
Keyword: JUMP
Keyword: CALL
Keyword: SUB_BEGIN
Keyword: SUB_END
Keyword: [X] (Custom defined ID Labels, 1 to 32 characters in size)
END FIN FIN ENDE FINE EINDE
JUMP SAUT BRINCA SPRING SALTARE SPRING
CALL APPEL LLAMA ANRUF CHIAMATA OPROEP
SUB_BEGIN SUB_DEMARRER SUB_INICIO SUB_BEGIN SUB_INIZIO SUB_BEGIN
SUB_END SUB_FIN SUB_FIN SUB_ENDE SUB_FINE SUB_EINDE

As shown in the previous example on the last page, the END keyword is used to mark the end of the
program. Any code after the END keyword will not be added to the program. If the END label is not
used, the compiler will automatically create one virtual END instruction at the very end of the last used
program instruction.

By using the JUMP and CALL instructions the END instruction can be skipped under program control to
do logic based on the state of the database (I/0’s data, schedules etc.).

This is very powerful to allow the program to branch based on the status of the different variables that
make up the controller’s database.

The 'JUMP' keyword allows for branching of program flow based in process status, it takes the
following format:

Syntax: JUMP [LABEL] (Custom defined ID Labels, 1-32 characters iIn size)

Example: JUMP SKIP_1 // Unconditional jump

.. Some instructions jumped unconditionally

[SKIP_1] // Placeholder label for jump instruction
.. Program jumps to the SKIP_1 label

and continues processing from this point

Another use of the JUMP instruction in conjunction with the IF keyword, is to branch the program when
a condition is detected.

eZ HVAC and building automation Wizard Page 30

M, Mircom g e PENBAS

Example: IF BI_1 IS OPEN THEN JUMP SKIP_2 // Conditional jump
.. Some instructions jumped if Bl _1 is open
[SKIP_2] // Placeholder label for jump instruction
.. Program jumps to the SKIP_2 label depending on Bl_1 status
and continues processing from this point

In the example program above, the JUMP skips some instructions if the result of the comparison is
TRUE, otherwise the instructions marked in red would get executed. More information on the IF
keyword will be given later in this chapter.

The 'CALL' keyword allows for branching of program flow based in process status. It differentiates from
the jump, that after the “called” subroutine ends, it returns control to the program on the line following
the CALL instruction, it takes the following format:

Syntax: CALL [LABEL] (Custom defined ID Labels, 1-32 characters in size)

Example: CALL SUBROUTINE_PROGRAM // Unconditional subroutine call
.. After the subroutine ends, // from main program
the program will continue executing
the lines following the CALL keyword
END // Program will end here

SUB_BEGIN [SUBROUTINE PROGRAM] // Labels for documentation or

.. Subroutine program // calls or jumps can be easily
// created using square brackets
SUB_END // Program returns control from

// a subroutine wehen the END_SUB
// instruction is found

Usually subroutines are located after the END of the main program, so it even makes sense to add them
in separate script files (other than script_1.txt) to keep the main program clean and readable.

Remember that at compile time the pre-processor merges all the script files along with the definition file
to be able to have full visibility of the program.

One thing to be aware of is that when the SUB_BEGIN keyword is found, the compiler automatically
adds an END instruction before the subroutine starts for if the user forgets to do so and avoid
unexpected results when the program executes.

eZ HVAC and building automation Wizard Page 31

M. Mircom: g e PENBAS

Similar to the conditional JUMP, the CALL instruction can be used in conjunction with the IF keyword, to
branch the program when a condition is detected.

Example: IF BI_1 IS OPEN THEN CALL SUBROUTINE_PRG_ 2
// Conditional subroutine call
.. after the subroutine ends, // from main program
the program will continue executing
the lines following the CALL keyword
END // Program will end here

SUB_BEGIN [SUBROUTINE PRG 2] // Labels for documentation or

.. Subroutine program // calls or jumps can be easily
// created using square brackets
SUB_END // Program returns control from

// a subroutine wehen the END_SUB
// instruction is found

In the example program above, the CALL calls the subroutine if the result of the comparison is TRUE,
otherwise the subroutine will not be called at all. More information on the IF keyword will be given later
in this chapter.

NOTE: It is important to have in mind that subroutines are not re-entrant, this means a subroutine can’t
call another subroutine, so basically there exist only two levels of program running at any time:

e The main program loop.
e Subroutine levels.

So every time an END instruction is found is interpreted depending on the context, if the program is in
the main loop the program will end, and a new iteration will begin.

If instead the END is found while inside a subroutine, the subroutine will end and yield control to the
instruction following the subroutine CALL in the main loop.

Also keep in mind that in processors with dual core that can have three PLC’s running simultaneously,
each PLC runs isolated and separated from the other PLC's, so they can’t call subroutines located in
another PLC’s.

The only “glue” that ties the PLC's together is the OpenBAS database collection of objects, where
information can be passed between them such as values, semaphores, etc

eZ HVAC and building automation Wizard Page 32

M, Mircom

OpenBAS

Building Automation System

Keyword: IF

Keyword: ELSE

Keyword: THEN

Keyword: ALSO

IF Sl N [o]:] NEL_CASO_QUE ALS

ELSE AUTRE CASO_CONTRARIO SONST ALTRIMENTI ANDERS
THEN PUIS ENTONCES DANN ALORA DAN
ALSO AUSSI TAMBIEN AUCH ANCHE 00K

The 'IF' keyword uses comparison operators to compare two operands, and sets a result if the
expression is TRUE after the THEN keyword, the optional ELSE keyword gets executed instead if the
comparison result is FALSE.

The comparison can be simple or nested comparisons can be joined by logical AND or OR keywords,
each comparison is evaluated independently and ANDED or ORED with the next as they appear on the
line.

Each of the left and right operands can be simple or complex, complex operands can use the:
e MIN/MAX/AVG keyword
e or have simple math suchas: 'MAXabc>MINdef','a+b>c+d','a>b'

After the THEN or ELSE a single assignment can be performed such as a = b or multiple assignments can
take place using the ALSO keyword.

There can be two types of IF expressions, UNARY or BINARY:

Syntax: IF [OPERAND_1] [COMPARISON operators: <, <=, >, >=, ==, =, I=] [OPERAND_2] \
[AND/OR for nested expressions] [... more comparison expressions] \

THEN [RESULT] [= or IS] [VALUE] ALSO [... more assignments] _

Syntax: IF [OPERAND_1] [COMPARISON operators: <, <=, >, >=, ==, =, 1=] [OPERAND_2] \
[AND/OR for nested expressions] [... more comparison expressions] \
THEN [RESULT] [= or IS] [VALUE] ALSO [... more assignments] \

ELSE [RESULT] [= or IS] [VALUE] ALSO [... more assignments]

eZ HVAC and building automation Wizard Page 33

M. Mircom: g e PENBAS

The difference between the UNARY and the BINARY expressions is that:

e The unary expression, the assignments after the THEN keyword will be executed only if the
result of the single or nested comparison is TRUE. If the result is FALSE no assignment will be
executed.

e Whereas in the binary expression, the single or multiple assignments after the THEN keyword
will be executed only if the result of the comparison(s) is (are) TRUE. And the assignments
following the ELSE will be executed only if the result of the comparison(s) is (are) FALSE.

The following examples show some simple and advanced use if this powerful keyword.

Example: IF Al_1 > 22.5 THEN BO 1 = ON

Using the first syntax the binary output 1 is set to ON (= 1) if the value of the analog input 1 is
greater than 22.5. Note that the output will not revert if it is less or equal than 22.5, as there is no
matching ELSE keyword to do this.

Example: IF Al_1 > 22.5 THEN BO_1 = ON ELSE BO_1 = OFF

Using the second example, the binary output 1 is set to ON (=1) if the value of the analog input 1 is
greater than 22.5, otherwise the output will be reset to OFF (=0) by means of the ELSE keyword.

Example: [1F_COMPLEX_ OPERANDS] // Simple Math can be applied to operands
IFAlL1*2>AlI 2+ 3 \
THEN AO 1 = 10 ALSO AO 2 = 20 ALSO BO_ 1 = ON \
ELSE AO_1 = 30 ALSO AO_2 = 40 ALSO BO_1 = OFF

// Also MIN, MAX and AVG keywords can be used for left or right operands
Example: IF MAX AlI_1 Al_2 Al1_3 Al_4 > MIN Al_4 Al_5 Al_6 \

THEN AO_1 = 10 ALSO A0 2 = 20 \
ELSE AO_1 = 30 ALSO AO_2 = 40
Example: [IF_AND_OR_NESTED_EXPRESIONS]
IF BI_1 IS OPEN AND BI_2 =/ CLOSED OR BI_3 = CLOSED OR \
BI_4 = CLOSED AND BI_4 IS NOT OPEN \
THEN BO_1 = ON ALSO BO_1 = ON \
ELSE BO_1 = OFF ALSO BO 1 = OFF
Example: IF BI_1 = OPEN AND BI_2 = CLOSED \
THEN BO_1 = ON \

ELSE BO_1 = OFF

eZ HVAC and building automation Wizard Page 34

M, Mircom

OpenBAS

Building Automation System

Example:
Example:

Example:
Example:

[SIMPLE _IF

1

IF BI_1 = BI_21 THEN BO_1 = ON

[TIMER_LOAD

RUN_COMMAND]

IF BI_1 = OPEN AND Bl_2 = CLOSED

THEN
ELSE

// using IS and 1S NOT

// "=" or *
Example:

Example:

==" or "I1="

IF BI_1 1S
THEN
ELSE

IF BI_1
THEN
ELSE

LOAD TMR 1

RUN TMR_1 ALSO MOTOR =

instead of the

(comparison operators)

OPEN AND BI_2 1S NOT OPEN

BO_1 = ON
BO 1 = OFF
IS =

BO_ 1 = ON
BO 1 = OFF

OFF

OPEN AND AO_3 IS >= 50 \

Note that AND / OR keywords can be used to create nested expressions, they are evaluated as they are

found and there is no precedence. If the standard follow thru precedence is not enough, intermediate

variables can be first created with the desired Boolean or math operations and the used in the IF

expression such as in the following example:

Example:

RES FLT 1 =
RES_FLT 1 *

RES FLT 2 = AVG Al_4 Al_5 Al 6

RES FLT 2 +

THEN
ELSE

MIN Al_1 Al _2 Al_3

=3

= RMT_7

BO 1 = ON
BO 1 = OFF

// Get the maximum value

// Multiply by 3

// Get the average value
// Add value of remote 7
// Now do the IF expression and evaluate
IF RES FLT 1 '= RES FLT 2 AND RES_ FLT 1 + 5 IS >= RES_FLT 1 \

\

On the next pages are tables with operators, and keywords that can be used with the IF instruction:

Table with comparison operators:

ETRE

IST

SEI

NOT

NON

NICHT

NIET

eZ HVAC and building automation Wizard

Page 35

OpenBAS

Building Automation System

M, Mircom

Note that the IS keyword only helps to make reading easier and is interpreted as an ‘=" ASSINMENT or
‘==" EQUAL operator.

Take caution however when using it together with the NOT keyword as it inverts the logic of the
operators, for example in the following examples, both comparison expressions give the same the same
results:

Example: IF BI_1 = OPEN THEN BO_1 = ON

IF BI_1 IS OPEN THEN BO_1 = ON
IF BI_1 IS = OPEN THEN BO_1 = ON
IF BI_1 !'= CLOSED THEN BO_1 = ON
IF BI_1 IS NOT CLOSED THEN BO_1 = ON
IF BI_1 IS NOT = CLOSED THEN BO_1 = ON

Also the following keywords are available and predefined for the user to make the scripts easier to read
and understand:

Table with predefined labels and constants:

ON ALLUME ENCENDIDO EINSCHALT ACCENDE AANDOEN
OFF ETEINDRE APAGADO AUSSCHALT SPENGE UITDOEN
OPEN OUVERT ABIERTO OFFEN APERTO OPEN
CLOSED FERME CERRADO GESCHLOSSEN CHIUSO DICHT
TRUE VRAI VERDADERO WAHR VERO WAAR
FALSE FAUX FALSO VALS FALSO VALS
RUN COURIR CORRE LAUF CORRERE LOPEN
LOAD CHARGER CARGA BELAST CARICARE LADEN

Table with math operators:

g

®

@

@

o

+

+

+

+

+

*

*

*

*

*

/ / / / / /
MIN MIN MIN MIN MIN MIN
MAX MAX MAX MAX MASSIMO MAX
AVG MOYENNE PROMEDIO DURCHSCHNITT MEDIA GEMIDDELDE
4= += += += += +=
= /= /= /= /= /=

*=

*=

*=

*=

*=

Note that the current implementation of the compiler only has simple math on the right side of the ‘=’
assignment operation, as there is no precedence or parenthesis enforced precedence. That is a task that

might be later implemented.

eZ HVAC and building automation Wizard

Page 36

M, Mircom

Table with binary controlling operators:

OpenBAS

Building Automation System

RUN COURIR CORRE LAUF CORRERE LOPEN
LOAD CHARGER CARGA BELAST CARICARE LADEN
SET SET FUAR_A_1 SETZEN SET SET
RESET RESET FUAR_A O ZURUECKSETZEN RESET RESET
START DEMARRER ARRANQUE STARTEN PARTENZA STARTEN
STOP ARRETEZ PARO STOPPEN ARRESTO STOPPEN

Beside the LOAD/RUN pair used for timers, the SET/RESET and START/STOP pair can be used in the
ELSE/THEN sections of the IF keyword to turn binary registers ON/OFF. See the following examples
below:

IF BI_1 = OPEN THEN LOAD TMR_1 ELSE RUN TMR_1
IF BI_1 IS OPEN THEN SET BO_1 ELSE RESET BO_1
IF BI_1 IS OPEN THEN START BO_1 ELSE STOP BO_1

Example:

Note there is no ‘=’ assignment operator between the mentioned keywords and the assigned register, as
in this case the destination operand (the one receiving the value) is the right operand, whereas in the
normal assignment the destination operand is the left operand.

There is a different use for the SET/RESET and START/STOP keywords that will be explained later in this
chapter.

This finishes the IF keyword section. The next keywords described will be some math and Boolean
instructions that might become handy when designing programs with large amount of variables and
extensive operations are needed.

eZ HVAC and building automation Wizard Page 37

OpenBAS

Building Automation System

M, Mircom

Keywords: symbolic math operators + - * /

® o © | o AL

+ + + + + +

* * * * * *

/ / / / / /

These MATH OPERATOR keywords allow doing simple math using the script compiler such as:

Syntax: [RESULT REGISTER] = [OPERAND 1] MATH_ OPERATOR [OPERAND_2]
Optional up to 20 operands
(10 for multiply and divide)
Example: RES FLT 1 = BI_1 + -15.3
RES FLT 2 = Al_1 — Al 2
AO 1 = RES FLT 1 * RMT_1
RMT 1 = 22.5 / RMT 1

Complex math or use of parentheses is not supported so complex math sequences should be broken
into simple two operand instructions.

However using compound instructions, math is not limited to the simple math operations shown above.

The next pages show some usage of advanced math using compound operators.

Also other math operators are given in the two next tables:

Keywords: text math operators

ADD, SUBSTRACT, MULTIPLY, DIVIDE

G

€

=

s

@

Hq

ADD

ADDITION

SUMA

ADDITION

AGGIUNGERE

TOEVOEGEN

SUBSTRACT

SOUSTRACTION

RESTA

SUBSTRAKTION

SOTTRAZIONE

AFTREKKEN

MULTIPLY

MULTIPLICATION

MULTIPLICACION

MULTIPLIZIEREN

MOLTIPLICARE

VERMENIGVULDIGEN

DIVIDE

DIVIDE

DIVISION

TEILEN

DIVIDERE

VERDELEN

Keywords: extra math operators MIN, MAX, AVG
MIN MIN MIN MIN MIN MIN
MAX MAX MAX MAX MASSIMO MAX
AVG MOYENNE PROMEDIO DURCHSCHNITT MEDIA GEMIDDELDE
eZ HVAC and building automation Wizard Page 38

M, Mircom g e PENBAS

// Symbolic math operators and their text counterparts can take up to
// 20 variables or constants to be calculated for addition and subtraction

Example: RES FLT 1 = # Al_1 Al 2 Al_3 Al_4 Al 5 22.5 17.5 AO_10
RES FLT 2 = = Al_1 Al 2 Al_3 Al_4 Al 5 22.5 17.5 AO_10
RES FLT 3 = ADD Al_1 Al _2 Al _3 Al 4 Al 5 Al_6 Al_7 Al _8
RES FLT 4 = SUBSTRACT Al _1 Al 2 Al _3 Al 4 Al 5 22.5

// Multiply and divide keywords can take only up to 10 keywords variables and
// constants to be be calculated

Example: RES FLT_1 = * Al_1 Al_2 Al_3 Al_4 Al_5 Al_6
RES FLT 2 = / Al_1 Al_2 Al_3 Al_4 Al 5 Al 6
RES FLT_3 = MULTIPLY Al_1 Al_2 Al_3 Al_4 Al_5 Al_6
RES FLT 4 = DIVIDE Al _1 Al _2 Al_3 Al_4 Al 5 Al 6
// When using simple assignment operator “=” For minimum, maximum or average

// keywords of up to 20 variables and constants can be calculated on a single
// line

Example: RES FLT_1 = MIN Al_1 AlI_2 Al_3 Al_4 Al_5 Al_6 Al_7

RES FLT 2 = MAX Al_1 Al _2 Al _3 Al_4 A1 5 Al 6 Al 7 Al 8

RES FLT_3 = AVG Al_1 Al_2 Al_3 Al_4 A1_5 Al_6 Al_7 Al_8
Keywords: compound math operators += = *= /=
The compound assignment tokens '+=', '-=', '*=', '/=' perform math instructions by; adding, subtracting,

multiplying or dividing the left operand with the right operand, and then storing back the result of the
operation in the left operand.

When using the compound operands the MIN, MAX and AVG keywords can be used together to obtain
the minimum, maximum or average of the operands, and then doing the compound math as can be
seen on the examples on the next page.

eZ HVAC and building automation Wizard Page 39

M. Mircom: g e PENBAS

Simple compound operands can take one or two operands, and optionally a MIN, MAX or AVG keyword
with up to each operand.

Syntax: [RESULT REGISTER] += -= *= /= [OPERAND_1]

Example: RES_FLT_1 += 1500.3 // Samples of compound math
AO_1 -= Al_2 // with one single operand.
RES FLT 2 *= RMTM1
RMT_1 /= =-1.1

// Now some samples of compound math with two operands
// and an additional math operator to do some basic math
// before doing the compound assignment.

RES FLT_1 += 1500.3 * ADI_1

RES FLT 2 += RES FLT 2 — AO_1

RES FLT_3 -= 1500.3 /7 ADI_1

RES FLT 4 *= ROM1 + 25

Up to four operators can be used after the MIN, MAX, AVG keywords to be processed before their result
is applied to compound instructions.

// Compound assignments using the MIN, MAX, AVG can take 1 to 4 parameters
Syntax: [RESULT REGISTER] += -= *= /= MIN [OP_1] [OP_2] [OP_3] [OP_4]

Syntax: [RESULT REGISTER] #= -= *= /

MAX [OP_1] [OP_2] [OP_3] [OP_4]

Syntax: [RESULT REGISTER] #= -= *= /

AVG [OP_1] [OP_2] [OP_3]1 [OP_4]
Example: RES FLT 1 += MIN Al _1 Al 2

RES_FLT_2 -= MAX Al_1 Al_2 Al_3 Al_4

RES_FLT_3 *= AVG Al_1 Al_2 Al_3

RES FLT 4 /="AVG AI_1 Al 2 Al 3 Al 4

eZ HVAC and building automation Wizard Page 40

M, Mircom g e PENBAS

Simple assignment operand can take up to twenty operands when combined with the symbolic or text
math operator keywords as well as with the MIN, MAX and AVG keywords.

In this case, after the “=” simple assignment operator a space must be left and then the desired math
operator and then up to 20 operands (10 in the case of multiplication and division) each separated with

a space or a tab.

// When using simple assignment operator “=” for minimum, maximum oOr average
// keywords of up to 20 variables and constants can be calculated on a single
// line

Example: RES FLT 1 = MIN Al_1 Al_2 Al_3 Al_4 Al_5 Al _6 Al _7

RES_FLT 2

MAX Al_1 Al_2 Al_3 Al_4 Al 5 Al_6 Al_7 Al 8

RES_FLT 3

AVG Al_1 Al_2 Al_3 Al_4 Al 5 Al_6 Al _7 Al_8

// Also symbolic math operators and their text counterparts can take up to
// 20 variables or constants to be calculated for addition and subtraction

Example: RES FLT 1 = % Al_1 Al 2 Al_3 Al_4 Al 5 22.5 17.5 AO_10
RES FLT 2 = = Al_1 Al 2 Al_3 Al_4 Al 5 22.5 17.5 AO_10
RES FLT 3 = ADD Al_1 Al _2 Al_3 Al_4 Al 5 Al_6 Al_7 Al _8

RES FLT 4 = SUBSTRACT Al _1 Al _2 Al _3 Al 4 Al 5 22.5

// Multiply and divide keywords can take only up to 10 keywords variables and
// constants to be be calculated

Example: RES FLT 1 = * Al_1 Al 2 Al_3 Al_4 Al 5 Al 6
RES FLT 2 = Z AlI_1 Al 2 Al_3 Al_4 Al 5 Al 6
RES FLT 3 = MULTIPLY Al_1 Al _2 Al_3 Al_4 Al 5 Al 6
RES FLT 4 = DIVIDE Al_1 Al_2 Al_3 Al_4 Al 5 Al 6

eZ HVAC and building automation Wizard Page 41

M, Mircom

OpenBAS

Building Automation System

Keyword:
Keyword:
Keyword:
Keyword:

AND
NAND
OR
NOR

Keyword:
Keyword:
Keyword:
Keyword:
Keyword:

XOR
NXOR
INVERT
AND_OR

ANO_OR_INVERTED

G

€

gy

@

@

&

AND

ET

Y

UND

E

EN

NAND

ET_INVERSE

Y_NEGADO

UND_UMDREHT

E_ROVESCIATO

EN_OMZETTEND

OR

ou

[0]

ODER

o)

OF

NOR

OU_INVERSE

O_NEGADO

ODER_UMDREHT

O_ROVESCIATO

OF_OMZETTEND

XOR

XOR

O_EXCLUSIVO

ODER_EXCLUSIF

O_EXCLUSIVO

OZ_EXCLUSIEF

NXOR

XOR_INVERSE

O_EXCLUSIVO_NEGADO

ODER_EXCLUSIF_UMDREHT

O_EXCLUSIVO_ROVESCIATO

0OZ_EXCLUSIEF_OMZETTEND

INVERT

INVERSER

INVERTIR

UMDREHT

ROVESCIATO

OMZETTEND

AND_OR

ET_OU

Y 0

UND_ODER

EO

EN_OF

AND_NOR

ET_OU_INVERSE

Y_O_NEGADO

UND_ODER_UMDREHT

E_O_ROVESCIATO

EN_OF_OMZETTEND

No PLC or controller would be complete without a good and powerful set of Boolean logic, so this

section covers the Boolean instruction capabilities of the script compiler.

Remember that even when a different language can be selected for the compiler, the English keywords

which are the native script language will always be available. This is noted as many programmers

working with Boolean logic still prefer to use the Standard English keyword as this is what most schools

in many countries use.

Boolean equations can be created using the following syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:
Syntax:

Syntax:

[RESULT REGISTER] = AND [OPERAND 1] [OPERAND 2] ..

[RESULT

[RESULT

[RESULT

[RESULT
[RESULT

[RESULT

REGISTER] =

REGISTER] = OR

REGISTER] =

REGISTER]
REGISTER]

REGISTER]

INVERT [OPERAND 1]

Optional up to 20 operands can follow

NAND [OPERAND_ 1] [OPERAND 2] ..
Optional up to 20 operands can follow

[OPERAND_17] [OPERAND_2] ..
Optional up to 20 operands can follow

NOR [OPERAND 1] [OPERAND 2] ..
Optional up to 20 operands can follow

XOR [OPERAND_1] [OPERAND_2]

NXOR [OPERAND 1] [OPERAND 2]

eZ HVAC and building automation Wizard

Page 42

M, Mircom g e PENBAS

These last two compound Boolean instructions as well as the SET/RESET and START/STOP with
EMERGENCY STOP and HYSTERESIS instructions were added to the PLC on version 2.68. Therefore to use
the script compiler it will be required to upgrade the firmware of the controller before using the
compiler and the eZ HVAC App wizard if the version loaded in it is less than 2.68

Syntax: [RESULT REGISTER] = AND_OR [OPERAND_ 17 [OPERAND_2] \
[OPERAND_3] [OPERAND_4]
Syntax: [RESULT REGISTER] = AND_NOR [OPERAND 1] [OPERAND 2] \
[OPERAND_3] [OPERAND_4]
Examples:
// Up to 20 operands allowed for these Boolean instructions
BO_1 = AND Bl _1 BI_2 BI_3 Bl _4 B1._5 BI_6 Bl_7 B1_8 BI_9 BI_10
BO 1 = AND B1_1 BI_2 BI_3 Bl_4 BI_5 Bl1_6 BI_7 BI_8
BO_1 = AND Bl _1 BI_2 BI_3 Bl _4 BI_5 Bl _6 BI_7
BO_1 = AND Bl _1 BI_2 BlI_3 Bl _4
BO 1 = AND Bl1_1 BI_2 BI1_3
BO_2 = NAND Bl _1 BI_2 BI_3 Bl _4 BI_5 BI_6 BI_7 BI_8 BlI_9 BI_10
BO_3 = OR Bl _1 BI_2 BI_3 Bl _4 BI_5 BI_6 BI_7 BI_8 Bl _9 BI_10
BO_4 = NOR Bl _1 BI_2 BI_3 Bl _4 Bl1_5 BI_6 Bl_7 B1_8 BI_9 BI_10

// Invert keyword takes one operand only

RES BIT 1 = INVERT BI_1
BO 1 = INVERT BI_1
RES BIT 1 = INVERT 0

A0 1 1 = INVERT 1.1

// XOR / NXOR keywords take two operands only

RES BIT_1 = XOR BI_1 BI_2
BO 1 = XOR BI_1 Bl 2
RES BIT_1 = NXOR BI_1 BI 2
BO 1 = NXOR BI_1 Bl 2

// Compound AND-OR keywords take always four operands,
// Unused terms can be set to: 1
RES_BIT_1 = AND_OR BI_1 Bl_2 Bl_3 Bl_4

BO 1 = AND OR BI_1 BI 2 BI 3 BI 4
RES BIT 1 = AND_NOR BI_1 BI 2 BI 3 BI 4
BO_1 = AND_NOR BI_1 BI_2 | BI_4 // Unused AND term is set to “1”

Remember that always user defined labels with the DEFINE keyword can be used instead of the
database object names to make the syntax of the sentences more clear.

eZ HVAC and building automation Wizard Page 43

OpenBAS

Building Automation System

M, Mircom

Keyword: SET Keyword: HYSTERESIS
Keyword: RESET Keyword: START
Keyword: INSIDE Keyword: STOP
Keyword: OUTSIDE Keyword: EMERG_STOP

e

€

®

o>

@

oL

SET

SET

FIJAR_A_1

SETZEN

SET

SET

RESET

RESET

FIJAR_A_O

ZURUECKSETZEN

RESET

RESET

START

DEMARRER

ARRANQUE

STARTEN

PARTENZA

STARTEN

STOP

ARRETEZ

PARO

STOPPEN

ARRESTO

STOPPEN

EMRG_STOP

ARRET_D_URGENCE

PARO_EMERG

NOT_HALT

ARRESTO_EMERG

NOODSTOP

INSIDE

INTERIEUR

DENTRO_DE

INNEN

DENTRO

BINNEN

OUTSIDE

EXTERIEUR

FUERA_DE

AUSSEN

FUORI

BUITEN

HYSTERESIS

HYSTERESE

HISTERESIS

HYSTERESE

ISTERESI

HYSTERESIS

The 'SET/RESET' command can be used to set or reset any binary register or output data base object .
The 'START/STOP/EMRG_STOP' keywords can be used to set a start / stop circuit with emergency stop
using the following syntax:

Syntax: [RESULT REGISTER] = SET [OPERAND_1] \
RESET [OPERAND_2]

Syntax: [RESULT REGISTER] = START [OPERAND_1] \
STOP [OPERAND_2] \
EMRG_STOP [OPERAND 3]

// Start and Stop circuit emulator with emergency stop
Example: BO 2 = START B1_1 STOP BI_2 EMRG_STOP BI_3

// Simple hysteresis expression for HVAC can be performed
// with SET-RESET equations

Example: BO 1 = SET BlI_1 RESET Bl _2

The 'INSIDE/OUTSIDE/HYSTERESIS' keywords can be to test if a process variable is inside or outside a
given range. The INSIDE keyword is similar to a dual comparison such as if LOW < PV < HIGH so if the
value of PV is 'inside' the low and high limits the result will be TRUE. The OUTSIDE keyword is similar to a
dual comparison such as if LOW > PV > HIGH, so if the value of PV is 'outside' the low and high limits the
result will be TRUE. The INVERT keyword at the end will invert the result of the comparison.

The 'INSIDE/OUTSIDE/HYSTERESIS' keywords can be to test if a process variable is inside or outside a
given range using the following syntax:

eZ HVAC and building automation Wizard Page 44

M. Mircom: g e PENBAS

The HYSTERESIS keyword is similar but checks only the crossing of the minimum and maximum
thresholds, so for example will set the output to TRUE when the PV crosses the maximum level and will
only return to FALSE after the PV goes down and crosses the minimum set point, this is very useful for
HVAC applications to provide a dead band and avoid cycling

The difference between using standard nested IF keywords against these instructions, is code saving, as
IF instructions might take as much as six to ten instructions to do the comparisons and the respective
jumps to skip the output codes. These instructions do the job using a single instruction.

Syntax: [RESULT REGISTER] = INSIDE [DATA BASE OBJECT FOR MIN]
[DATA BASE OBJECT FOR MAX]
[DATA BASE OBJECT FOR PV]
[Optional INVERT keyword]

7 7 7

Syntax: [RESULT REGISTER]

OUTSIDE [DATA BASE OBJECT FOR MIN]
[DATA BASE OBJECT FOR MAX]
[DATA BASE OBJECT FOR PV]
[Optional INVERT keyword]

s 77

Syntax: [RESULT REGISTER] HYSTERESIS [DATA BASE OBJECT FOR MIN] \
[DATA BASE OBJECT FOR MAX] \

[DATA BASE OBJECT FOR PV]

// Output BO_1 will be TRUE if Al_1 > ADF 1 and Al_1 < ADF_2 (normal logic)
Example: BO_1 = INSIDE ADF_1 ADF 2 Al _1

// Output BO_1 will be FALSE if Al_1 < ADF_1 or Al_1 > ADF_2 (inverted logic)
Example: BO_2 = INSIDE ADF_1 ADF_2 Al_1 INVERT

// Output BO_ 1 will be TRUE if Al_1 < ADF_1 or Al_1 > ADF_2 (normal logic)
Example: BO_1 = OUTSIDE ADF_1 ADF 2 Al_1

// Output BO_1 will be FALSE if Al_1 > ADF_1 and Al_1 < ADF 2
// (inverted logic)
Example: BO_1 = OUTSIDE ADF_1 ADF_2 Al _1 INVERT

// Output BO_1 will be TRUE the moment AlI_1 > ADF_2 and will remain so
// until Al_1 < ADF_1 at which point will be FALSE
Example: BO_1 = HYSTERESIS ADF_1 ADF_2 Al_1

The HYSTERESYS does not have an inverted output logic incorporated in the instruction, if needed it
should be inverted after the instruction is evaluated HYSTERESIS with an INVERT keyword .

eZ HVAC and building automation Wizard Page 45

OpenBAS

Building Automation System

M, Mircom

Keyword:

SCHEDULE

4

€

®

@

@

oL

SCHEDULE

CALENDRIER

HORARIO

ZEITPLAN

ORARIO

DIENSTREGELING

ON

ALLUME

ENCENDIDO

EINSCHALT

ACCENDE

AANDOEN

OFF

ETEINDRE

APAGADO

AUSSCHALT

SPENGE

UITDOEN

PERIOD

PERIODE

PERIODO

PERIODE

PERIODO

PERIODE

DAY

JOUR

DIA

TAG

GIORNO

DAG

WEEK

SEMAINE

SEMANA

WOCHE

SETTIMANA

WEEK

MONTH

MOIS

MES

MONAT

MESE

MAAND

The OpenBAS NX controllers feature a real time clock and can handle up to 400 different schedules.
With the SCHEDULE keyword weekly or specific date schedules can be created.

Different type of schedules can be created:
e TurnON
e Turn OFF
e Turn On and Off at specific times
e Maintain On inside a specific period
e Setavalue based on a schedule.

Weekly schedules

Weekly schedules can be created using a week day flag to make them active on any day from Monday to
Sunday and including holidays using the following syntax.

Syntax: [RESULT REGISTER] = SCHEDULE [WEEK] \
{Week day flags 7 days + holiday in the form [MTWTFSSH]\
not used days should be "-"} \
[ON or OFF] \
[time 00:00 to 23:59]
Syntax: [RESULT REGISTER] = SCHEDULE [WEEK] \
{Week day flags 7 days + holiday in the form [MTWTFSSH]\
not used days should be *"-"} \
[ON] [time 00:00 to 23:59] \
[OFF] [time 00:00 to 23:59] \
[PERIOD is optional to force during period to on]
Syntax: [RESULT REGISTER] = SCHEDULE [WEEK] \

{Week day flags 7 days + holiday in the form [MTWTFSSH]\
not used days should be *"-"}

\

[VALUE] [Scheduled commanded value or set point] \
[time 00:00 to 23:59]

eZ HVAC and building automation Wizard Page 46

M, Mircom g e PENBAS

Specific date schedules

Specific date schedules use a day / month information to operate on that specific day of the year.

Syntax: [RESULT REGISTER] = SCHEDULE [DAY] [Day of month] \
[MONTH] [month of year] \
[ON or OFF] [time 00:00 to 23:59]

Syntax: [RESULT REGISTER] = SCHEDULE [DAY] [Day of month] \
[MONTH] [month of year] \
[ON] [time 00:00 to 23:59] \
[OFF] [time 00:00 to 23:59] \

[PERIOD is optional to force during period to on]

// Outputs or bit registers can be commanded by schedule
Example: BO 1 = SCHEDULE WEEK {MTWTF---} ON {8:00}
BO 1 = SCHEDULE WEEK {MTWTF---} OFF {17:45}

// A schedule with ON and OFF times can be also set
Example: BO_1 = SCHEDULE WEEK {MTWTF---} ON {8:00} OFF {18:30}

// Or a period of time during which the output will be commanded to ON
Example: BO 1 = SCHEDULE WEEK {MTWTFS--} ON {8:00} OFF {18:30} PERIOD

// Also set points and values can be changed at a given time to pre-set value
Example: ADF_1 = SCHEDULE WEEK {MTWTF--H} VALUE 30 {15:00}

// Specific dates can be created instead of weekly schedules
Example: BO_1 = SCHEDULE DAY 30 MONTH 1 ON {15:00}
BO_1 = SCHEDULE DAY 30 MONTH 1 OFF {22:15}%}

// Specific dates can be created instead of weekly schedules
Example: BO_1 = SCHEDULE DAY 30 MONTH 1 ON {15:00} OFF {18:30%}

// Specific dates can be created instead of weekly schedules
Example: BO_1 = SCHEDULE DAY 30 MONTH 1 ON {15:00} OFF {18:30} PERIOD

// Specific dates can be created instead of weekly schedules
Example: ADF_1 = SCHEDULE DAY 30 MONTH 1 VALUE 22.5 {15:00}

eZ HVAC and building automation Wizard Page 47

OpenBAS

Building Automation System

M, Mircom

Keyword:
Keyword:
Keyword:

TIMER
OSCILATOR
FREQUENCY

G

¢

=

o>

@

oL

TIMER

MINUTEUR

TEMPORIZADOR

TIMER

TIMER

TIMER

OSCILATOR

OSCILLATEUR

OSCILADOR

OSZILLATOR

OSCILLATORE

OSCILLATOR

FREQUENCY

FREQUENCE

FRECUENCIA

FREQUENZ

FREQUENZA

FREQUENTIE

SECONDS

SECONDES

SEGUNDOS

SEKUNDEN

SECONDI

SECONDS

SEC_1_10

SEC_1_10

SEG_1_10

SEK_1_10

SEC_1.10

SEC_1.10

The 'TIMER' keyword is used to configure a timer’s operation mode, each controller has sixteen system
timers that can be configured as:

e Second down counter

e 1/10 of second down counter

e Oscillator with pulse output

e Frequency converter with pulse output
The timers can be used alone or in conjunction with special purpose instructions for HVAC applications
to synchronize events, the following examples will explain how to set them up.

// The result register is the timer status down counter timer
Syntax: [RESULT REGISTER] = TIMER [timer number 1 to 16]
[ADI_1..200] [reload value] [SECONDS or SEC 1 10]

// Outputs the oscillator period to the binary result register
Syntax: [RESULT REGISTER] = TIMER [timer number 1 to 16]
[OSCILATOR] [OPERAND 1 to convert to a period]

// Outputs the frequency to the the binary result register
Syntax: [RESULT REGISTER] = TIMER [timer number 1 to 16]
[FREQUENCY] [OPERAND_ 1 to convert to frequency]

// Prepare timer reload value and set default value into ADI reload register
// SECONDS or SEC 1 10 flag can be used
Example: TMR_1 = TIMER 1 ADI_1 5 SECONDS

// A binary output or result bit can be made to toggle at a given frequency
Example: BO 1 = TIMER 1 OSCILATOR 5

// Or instead oscillate at a fixed or variable rate
Example: BO 1 = TIMER 1 OSCILATOR Al 1

// A frequency (1/0SCILATOR) can also be used.
Example: RES_BIT_1 = TIMER 1 FREQUENCY Al_1

eZ HVAC and building automation Wizard Page 48

M, Mircom

OpenBAS

Building Automation System

Keyword:

TOTALIZE

e

¢

®

)

@

oL

TOTALIZE

TOTALISATEUR

TOTALIZADOR

ZAEHLER

TOTALIZZATORE

TOTALIZATOR

PV

\id

VP

ISTWERT

VP

PV

ON_CHANGE

SUR_LE_CHANGEMENT

AL_CAMBIAR

BEI_AENDERUNG

SUL_CAMBIAMENTO

OP_VERANDERING

LAST_PERIOD

DERNIERE_PERIODE

ULTIMO_PERIODO

LETZTE_PERIODE

ULTIMO_PERIODO

LAATSTE_PERIODE

PARTIAL_KW

PARTIELLE_KW

PARCIAL_KW

PARTIELL_KW

PARZIALE_KW

PARTIEEL_KW

PARTIAL_ACC

PARTIELLE_ACCUM

PARCIAL_ACUM

PARTIELL_AKKUMULIERT

PARZIALE_ACUMULATO

PARTIEEL_GEACCUMULEERDE|

SAMPLE_COUNT

NUMERO_ECHANTILLON

NUMERO_MUESTRAS

PROBENZAEHLUNG

CONTEGGIO_CAMPIONI

MONSTER_TELLER

Totalizers can also be called counters, as they keep count of events or quantities; they are used for many

different purposes

such as:

e The number of times a motor started, or stopped or both

e The number of times a door or window was opened, closed or both.

e The number of people entering or exiting a building, or both.

e The amount of liters used when using a pulsed water flow meter.

e The amount of gas or energy used when using pulsed gas or energy meters.

e Adding a period can convert the previous readings into for example liters per minute, cubic feet

per hour, kilowatts hour, etc.

e Also analog signals can be used for example to convert current or watts to energy readings and
store KVAh or KWh.

Setting up a totalizer is straightforward, and takes the following forms:

Syntax: [EEPROM REGISTER updated every 5 minutes] = TOTALIZE
= [OPERAND 1 process variable]

PV

ON_CHANGE
PARTIAL_ACC

Syntax: [RESULT REGISTER] =

PV

ON_CHANGE
LAST_PERIOD
MIN

Syntax: [EEPROM REGISTER updated KWH every 10 minutes]

PV

PARTIAL_KW
SAMPLE_COUNT

[change to 0, change to 1, 2 = any change]
[OPERAND 2 5 minute partial accumulated value]

TOTALIZE

[OPERAND 1 process variable]
[change to O, change to 1, 2 = any change]
[OPERAND 2 to store last period]
[totalisation period 1,5,10,20,30,60 minutes]

[OPERAND 1 process variable]
[OPERAND 2 partial sum of 10 min accum. KWh]
[OPERAND 3 nr. of samples per 10 min. period]

= TOTALIZE

The only limit on the amount of totalizers is the number of registers available to store the totalized

counters.

eZ HVAC and building automation Wizard

Page 49

M, Mircom g e PENBAS

On the first example, an EEPROM register will be updated every 5 minutes with the partial accumulated
count that is stored in RAM, this is done because EEPROM'’s have a limited number of write cycles
(1,000,000) and stressing it beyond that point will damage the memory cell.

// Totalisation (accumulation) of pulses when input changes to:

// to 0, to 1 or toggles (2) and with EEPROM backup can be created

Example: ADF_1 = TOTALIZE PV = BI_1 \
ON_CHANGE = 1 \
PARTIAL_ACC = RES FLT 1

On this next example a periodic count is kept in a pair of registers, rge result register keeps track of the
total count of the current period and the last period register stores the last period.

So for example if we were measuring water and the period is set to 60 minutes, the result register will
have the count of liters of the current hour and will be incrementing the counter every time a pulse that
represents a certain amount of water is received. Meanwhile the last period will keep the record of liters
used during the previous hour.

When the time period expires, the current period counter is reset to zero after having copied its current
value to the last period register to start a new count.

// Totalisation per period of time between 1,5,10,20,30,60 minutes

Example: RES FLT 1 = TOTALIZE PV = BI_1
ON_CHANGE! =
LAST_PERIOD
MIN. = 60

\
1 \
= RES_FLT 2 \

The last example is totalizator for energy; it’s input is an analog value that can be a current sensor that is
multiplied by voltage to get VA (Volt-Amps) and optionally also multiplied by the power factor to get
Watts. This value is sampled and a partial KW count is updated several times per second and the
number of samples for the minute period is also stored.

At the end of each 10 minute period, the totalized energy which is stored in an EEPROM register is
incremented by the energy stored in the 10 minute partial register and stored back. The 10 minute
energy register as well as the sample counter are then reset to zero to start a new count

// Totalisation of Kilo Watts hours can be created using totalizers

Example: ADF_1 = TOTALIZE PV = RES_FLT 1 \
PARTIAL_ KW = RES FLT 1 \
SAMPLE_COUNT, = RES_FLT_2

eZ HVAC and building automation Wizard Page 50

M, Mircom

OpenBAS

Building Automation System

Keyword:

HOUR_COUNTER

g

€

®

)

@

L

HOUR_COUNTER

COMPTEUR_D_HEURES

HOROMETRO

STUNDEN_ZAEHLER

CONTAORE

URENTELLER

PV

VP

VP

ISTWERT

VP

PV

PARTIAL_COUNT

COMPTE_PARTIEL

CUENTA_PARCIAL

TEILZAEHLUNG

CONTEGGIO_PARZIALE

GEDEELTELUKE_TELLING

EEPROM

EEPROM

EEPROM

EEPROM

EEPROM

EEPROM

Hour counters keep track of time of operation of any given controlled device, such as a pump, an air
handler unit, time a door or window is open or closed, or the time a light is on or a temperature is in
alarm etc.

Later this time count can be used to trigger alarms or sequences based on hours of operation such as:

e Changing to alternate equipment to balance the hours of operation in machinery arrays.

e Issuing maintenance alarms.

e Warning that a filter needs to be replaced.

e Etc.
Setting up a counter is relatively easy, when the process variable is TRUE, the count is incremented, and
otherwise it sits still. As with the totalizers, because the hours of operation is stored in EEPROM and it
has a write life time of 1,000,000 cycles, a partial count is kept in a RAM based partial count, and the
contents of the EEPROM are updated every 5 minutes with the most recent hour count.

The hour counter takes the following format:

Syntax: [RESULT REGISTER] = HOUR_COUNTER
PV = [OPERAND 1 process variable]
PARTIAL_COUNT = [OPERAND 2 partial 5 minutes counter]
EEPROM = [OPERAND 3 eeprom updated every 5 minutes]

// An hour counter to keep track of any input / output being ON

// can be easily implemented

Example: RES_FLT_1 = HOUR_COUNTER PV = BO_1 PARTIAL_COUNT = RES_FLT_ 1 \
EEPROM = ADF_1

The only limit on the amount of counters is the number of registers available to store the hour count.

eZ HVAC and building automation Wizard Page 51

M. Mircom: g e PENBAS

Keyword: PROP_CTRL

PROP_CTRL ICONTROLE_PROPORTIONNEL CONTROL_PROP PROP_BEDIENUNG CONTROLLO_PROP PROP_BEDIENING
PV VP VP ISTWERT VP PV
SP CONSIGNE P_A) SOLLWERT SP SETPUNT
PB B_PROP B_PROP PB B_PROP PB
MIN MIN MIN MIN MIN MIN
MAX MAX MAX MAX MASSIMO MAX
INTEG INTEG INTEG INTEG INTEG INTEG
EEPROM EEPROM EEPROM EEPROM EEPROM EEPROM

Proportional control instructions are used to modulate machinery that can vary a process such as:
e Variable frequency drives (VFD’s).
e Dimmable lighting ballasts.
e Proportional water valves for heating and cooling coils.
e Damper actuators with proportional positioning, for HVAC applications.
e Etc.

The output of a proportional control will swing from 0-100% and it can be output to analog outputs for

direct control of the above mentioned devices, or sent via communication channels to command VFD’s,
dampers and actuators for example via Optomux, N2-Open, Modbus or BACnet.

The proportional control with minimum, maximum and integration has the following format:

Syntax: [RESULT REGISTER] = PROP_CTRL
PV = [Process variable]
EEPROM = [Index to EEPROM storage, ADF or ADI or ADB]
SP = [OPERAND_1] set point]
PB = [OPERAND_ 2] proportional band
MIN = [OPERAND_3] minimum output range
MAX = [OPERAND_4] maximum output range
INTEG = [OPERAND 5] integration time (ramp)

// Proportional controls to position dampers, valves or speed of VFD"s can be
// created on a single line, here the syntax with the “=” operator between
// keywords and values is shown

Example: AO 1 = PROP_CTRL \
PV = Al_1 \
EEPROM = ADF_1 \
SP = 22.5 \
PB = 1.5 \
MIN = 10 \
MAX = 90 \
INTEG = 10

eZ HVAC and building automation Wizard Page 52

M, Mircom g e PENBAS

// Also the line can be written without the "=" operator

Example: AO 1 = PROP_CTRL \
PV Al_1 \
EEPROM ADF_1 \
SP 22.5 \
PB 1.5 \
MIN 10 \
MAX 90 \
INTEG 10

// Even a very simple line can also be created using only the operands
// Each parameter”s position is assumed to be in the before mentioned order
Example: AO_1 = PROP_CTRL Al_1 ADF 1 22.5 1.5 10 90 10

The only limit on the proportional control instructions is the number of registers available to store the
variables and set points.

Note that the result register for this instruction can only be analog outputs or REF_FLT registers. For
example the output of the proportional control will be sent to a remote point to do control over a field
bus protocol, after the proportional control instruction, a write to the remote point has to be issued
separately. This is shown on the following example.

// First the proportional control is executed
Example: RES FLT_1 = PROP_CTRL Al _1 ADF_1 22.5 1.5 10 90 10
RMT_1 = RES FLT 1 // Now the value can be sent to the field bus
// remote point, every time a remote point is
// the left side of an assignment operation,
// it will be written instead of read in the
// bus using the selected protocol.

More information on setting up remote points using the RMT keyword as well as configuring field buses
with the COMM keyword to operate as either slaves or masters is given their corresponding sections on
this user’s guide.

eZ HVAC and building automation Wizard Page 53

M, Mircom

OpenBAS

Building Automation System

Keyword: HVAC_STAGE
HVAC_STAGE ETAPE_HVAC ETAPA_HVAC HVAC_STUFE STADIO_HVAC HVAC_ETAPPE
COOLING REFROIDISSEMENT ENFRIAMIENTO KUEHLUNG REFFREDDAMENTO KOELING
HEATING CHAUFFAGE CALEFACCION HEIZUNG RISCALDAMENTO VERWARMING
sp CONSIGNE P_Al SOLLWERT sp SETPUNT
PB B_PROP B_PROP PB B_PROP PB
PV VP VP ISTWERT VP PV
STAGE_RUN VALIDACION_ETAPE PERMISIVO_ETAPA STUFE_LAUF STADIO_FUNZIONARE ETAPPE_LOPEN
TMR_MINIMUM_ON TMR_MIN_ALLUMER TMR_MINIMO_ENC TMR_MIN_EIN TMR_MIN_ACCENDERE TMR_MIN_IN
TMR_MINIMUM_OFF TMR_MIN_ARRET TMR_MINIMO_APAG TMR_MIN_AUS TMR_MIN_SPEGNERE TMR_MIN_UIT

TMR_INTERSTAGE

TMR_INTERETAPES

TMR_INTERETAPAS

TMR_ZWISCHENSTUFE

TMR_INTERSTADIO

TMR_INTERSTAGE

Powerful yet simple HVAC control sequences can be built using this application specific HYAC_STAGE
instruction. In the programmer manual for the OpenBAS NX controllers some additional information and
examples are given to fully implement air handler units control sequences. The eZ App wizard goes a
step further by fully automating the build process for simple to complicated air handling units.

The HVAC stage takes the following format:

Syntax: [RESULT REGISTER] = HVAC_STAGE

[COOLING or HEATING flag]

EEPROM [Index to EEPROM storage, ADF or ADI or ADB]
SP [OPERAND_1]
PB [OPERAND_ 2]
PV [OPERAND_3]
STAGE_RUN [OPERAND_4]

TMR_MINIMUM_ON_SEC
TMR_MINIMUM_OFF_SEC
TMR_INTERSTAGE

[OPERAND 5] **optional
[OPERAND_6] **optional
[OPERAND 7] **optional

// Timers are included for: minimum On time, minimum OFF time
// as well as inter-stage, the timers have to be independently created
// using the TIMER keywords

Example: BO 1 = HVAC_STAGE COOLING \
EEPROM = ADF_1 \
PV = Al 1 \
= = 22.5 \
PB = \
STAGE_RUN =Bl 1 \
TMR_MINIMUM_ON = TMR_1 \
TMR_MINIMUM_OFF = TMR_1 \
TMR_INTERSTAGE = TMR_3

eZ HVAC and building automation Wizard Page 54

M, Mircom g e PENBAS

// Simple stage control

Example: BO 2 = HVAC_STAGE HEATING \
PV = Al_1 \
SP = 22.5 \
PB =2 \
STAGE_RUN = Bl_1 \
EEPROM = ADF_7

Air handling units are very diverse mechanically and in operation sequence. This stage instruction can be
linked together to make any control no matter how complex it is.

Basically you provide the stage with the following information so it can perform its job:

e Abinary result register that will be turned On/Off as needed

e Information weather the stage is intended for Heating or Cooling. This can be changed at run
time

e A process variable that is the feedback to control the result register output based on the set
point and proportional band, that in this case is used as a differential to provide hysteresis as to
when the stage has to be On or Off.

e Astage run signal, that usually comes from a Boolean AND instruction and has all the chained
information to let the stage run such as: emergency stop, low pressure cut off, high pressure cut
off, water flow present, manual, scheduled or remote start command.

e There are two timers that can optionally set a minimum ON and minimum OFF time, this is very
important when driving compressors, motors and other load that are sensitive to frequent start
and stop cycles.

e Aninter-stage timer that links together multiple stages, so not all of them start simultaneously.

The eZ App wizard generates tested solutions that can be further personalized to suit any kind of simple
to complex solutions.

The HVAC stage instruction is not limited only to air handler applications, as the operands are generic
and can control any variable such as: pressure, current, energy, water or gas flow, etc.

eZ HVAC and building automation Wizard Page 55

M, Mircom

OpenBAS

Building Automation System

Keyword: ALTERNATE
ALTERNATE ALTERNER ALTERNADO ALTERNIEREN ALTERNATO AFWISSELEN
PV VP VP ISTWERT VP PV
sp CONSIGNE P_Al SOLLWERT sp SETPUNT
PB B_PROP B_PROP PB B_PROP PB
EEPROM EEPROM EEPROM EEPROM EEPROM EEPROM
ALT_OUTPUT ALT_SORTIE ALT_SALIDA ALT_AUSGANG ALT_USCITA ALT_UITGANG
ALT_STAGES ALT_ETAPES ALT_ETAPAS ALT_STUFEN ALT_STADIO ALT_ETAPPE
ALT_LEADER ALT_LEADER ALT_LIDER ALT_FUHRER ALT_DIRETTORE ALT_AANVOERDER
ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC ALT_DEC_INC
ALT_TMR_NEXT_STAGE ALT_TM_SUIV_ETAPE ALT_TM_SIG_ETAPA ALT_NACHSTE_STUFE ALT_PROSSIMO_STADIO | ALT VOLGENDE_ETAPPE
ALT_TMR_ALARM ALT_TM_ALARME ALT_TM_ALARMA ALT_TMR_ALARM ALT_TMR_ALLARME ALT_TMR_ALARM
ALT_EXT_ENABLE ALT_ACTIV_EXT ALT_HABIL_EXT ALT_EXT_FREIGABE ALT_ABILITAZIONE_EST ALT_EXT_SCHAKELEN
ALT_FEEDBACK ALT_RETOUR ALT_RETROALIM ALT_RUCKKOPPLUNG ALT_RISPOSTA ALT TERGUGKOPPELING
ALT_PARALLEL ALT_PARALLELE ALT_SIMULTANEO ALT_PARALLEL ALT_PARALLELO ALT_PARALLEL

The ALTERNATE instruction is a simple but yet powerful instruction that can works by alternating

machinery such as: pumps, ventilators, chillers, boilers, AHU's etc.

It is used to balance operation of the before mentioned equipment, but not also alternates but can also

be programmed to parallel operation, so if the first stage can’t cope with the load, such as in pump

applications, a second, third and up to eight stages can be paralleled if necessary.

It has advanced features such as:

e Stage feedback to look for not operating stages.

e External enable to switch out stages that might be in maintenance or are out of order.

e Timers to sequence the operation of the next stage or detect faulty stages.

e Incremental or decremented staging.

e Can be set to work with analog process variables such as analog pressure transducers or binary

type such as pressure switches for complex or simple operation.

Pump alternate and paralleling can be created using the following syntax:

Syntax:

BO_1 = ALTERNATE

PV
ALT_STAGES
EEPROM
ALT_DEC_INC
ALT_LEADER

[OPERAND_1]
[OPERAND_2]

[Index to EEPROM, ADF or ADI or ADB]

[OPERAND_3]
[OPERAND_4]

ALT_TMR_NEXT_STAGE[OPERAND_5]

ALT_TMR_ALARM
Sp

PB
ALT_FEEDBACK
ALT_EXT_ENABLE

[OPERAND_6]
[OPERAND_7]
[OPERAND_8]
[OPERAND_9]
[OPERAND_10]

2 to 8

0/1

1 to 8
1 to 16
1 to 16

**optional
**optional
**optional
**optional
**optional
**optional
**optional
**optional

eZ HVAC and building automation Wizard

Page 56

M, Mircom g e PENBAS

In the first example we can see how to set up a simple four stage pump array alternator. In this case the
process variable is a pressure switch connected to binary input 1 that would start the leader pump in
sequence every time the pressure drops so it closes, and stops them when the pressure rises and the
pressure switch opens.
If the pressure switch operates inverse a simple invert instruction can be used to invert the signal that is
fed into binary input 1.

// Simplest construction with binary PV

Example: BO_1 = ALTERNATE \
PV = Bl_1 \
ALT STAGES = 4 \
EEPROM = ADF_1

In this other example an analog pressure transducer connected to analog input 1 is used to start the
current leader pump when the pressure falls below 100 PSI and conversely to stop it and change the
pump sequence when it reaches 120 PSI.

// Simplest construction with analog PV, set point and proportional band have
// to be provided as well

Example: RES_BIT_1 = ALTERNATE
PV = Al 1 \
ALT_STAGES = 4 \
EEPROM = ADF_1 \
= = 100 \
PB = 15

All other parameters of the ALTERNATE keyword are optional and can be added to the line in any order.
They work to personalize the operation of the ALTERNATE module. For more information refer to the
OpenBAS NX programmer’s manual to get examples of wiring and online programming of this

instruction.
ALT_PARALLEL = 0 = alternate, 1 = alt + parallel
ALT_DEC_INC = 0 = decrement, 1 = increment sequence
ALT_LEADER =2 to 8
ALT FEEDBACK BI 1 Starting feedback input
ALT_EXT_ENABLE = BI_2 Starting external enable inp.
ALT_TMR_NEXT _STAGE = TMR_10 Timers have to be set with
ALT_TMR_ALARM = TMR_2 the TIMER keyword in

individual lines with their
corresponding time values

NOTE: Every time an ALTERNATE module is set up or its operating features other than the set point or
proportional band are modified, it is recommended to reset the OpenBAS controller to reset the internal
status sequence of operation of this instruction.

eZ HVAC and building automation Wizard Page 57

M, Mircom

Keyword:

TREND

Building Automation System

OpenBAS

B

¢

®

@

@

AL

TREND

TENDANCE

TENDENCIA

TENDENZ

TENDENZA

TREND

The OpenBAS NX controllers have the capability to log data and then later with the aid of the software
this logged data can be retrieved to create graphics. The TREND keyword adds in setting up to sixteen
available trends. Trend data takes the following format:

TREND [OPERAND 1]
INTERVAL_MINUTES = [1, 5, 10, 15, 20, 30, 60 minutes]

Syntax:

// Trending made easy up to 16 trends at: 1,5,10,15,20,30,60 minute interval
Example: TREND Al _1 INTERVAL_MINUTES = 15

// Trending for binaries, only change of state (COS) is detected and stored
Example: TREND Bl _1

Standard OpenBAS NX controllers can store up to 124 samples for analog values at the programmed
interval, so for example if 60 minutes is selected, the last 124 hours or five days will be stored.

The following table gives storage capacity at different intervals:

Using standard storage Using expanded memory

Save interval [Hours of storage |Days of storage Save interval [Hours of storage |Days of storage
1 2.1 0.1 1 16.7 0.7
5 10.3 0.4 5 83.3 3.5
10 20.7 0.9 10 166.7 6.9
15 31.0 1.3 15 250.0 10.4
20 41.3 1.7 20 333.3 13.9
30 62.0 2.6 30 500.0 20.8
60 124.0 5.2 60 1,000.0 41.7

Note: 1minute interval saving reverts to 5 minutes after 124 samples to protect EEPROM memory

For binary values, the last 248 state changes are stored without regard to any sampling rate, so if for
example a variable changes states twice a day, the buffer will contain data of 124 days or four months.

If 128K or 256K expanded memory or a dual core is installed, the trend data logging is incremented to
1,000 samples.

If the dual core is installed in an installed USB memory the data of trends created with the TREND
keyword will be stored on a one minute period with unlimited capability. The space of the USB memory
should be sufficient to provide for years of storage.

eZ HVAC and building automation Wizard Page 58

M, Mircom

OpenBAS

Building Automation System

Keyword: COMM
COMM COMM COMM COMM COMM COMM
DEVICE_ADDRESS ADDRESSE_COM DIRECCION_COM REGLERADRESSE INDIRIZZO_DISPOSITIVO CONTROLLER_ADRES
PARITY_NONE PARITE_SANS PARIDAD_SIN PARITAT_KEINE PARITA_NESSUNA PARITEIT_NONE
PARITY_ODD PARITE_IMPAIRE PARIDAD_NON PARITAT_UNGERADE PARITA_DISPARI PARITEIT_ONEVEN
PARITY_EVEN PARITE_PAIRE PARIDAD_PAR PARITAT_SOGAR PARITA_PARI PARITEIT_EVEN
STOP_BIT_O BIT_D_ARRET_O BIT_PARO_O STOP_BIT_0 STOP_BIT_O STOP_BIT_0
STOP_BIT_1 BIT_D_ARRET_1 BIT_PARO_1 STOP_BIT 1 STOP_BIT_1 STOP_BIT_1
BAUD_RATE BAUD BAUDIOS BAUD BAUD BAUD

PROTOCOL_ASCII_TERMINAL

PROTOCOLE_ASCIl_TERMINAL

PROTOCOLO_ASCII_TERMINAL

PROTOKOLL_ASCII_TERMINAL

PROTOCOLLO_ASCII_TERMINAL

PROTOCOL_ASCII_TERMINAL

PROTOCOL_OPTO_22 SLAVE

PROTOCOLE_OPTO_22 ESCLAVE

PROTOCOLO_OPTO_22_ESCLAVO

PROTOKOLL_OPTO_22 SLAVE

PROTOCOLLO_OPTO_22_SCHIAVO

PROTOCOL_OPTO_22_SLAAF

PROTOCOL_N2_OPEN_SLAVE

PROTOCOLE_N2_OPEN_ESCLAVE

PROTOCOLO_N2_OPEN_ESCLAVO

PROTOKOLL_N2_OPEN_SLAVE

PROTOCOLLO_N2_OPEN_SCHIAVO|

PROTOCOL_N2_OPEN_SLAAF

PROTOCOL_MODBUS_SLAVE

PROTOCOLE_MODBUS_ESCLAVE

PROTOCOLO_MODBUS_ESCLAVO

PROTOKOLL_MODBUS_SLAVE

PROTOCOLLO_MODBUS_SCHIAVO

PROTOCOL_MODBUS_SLAAF

PROTOCOL_BANCET_MSTP

PROTOCOLE_BANCET_MSTP

PROTOCOLO_BANCET_MSTP

PROTOKOLL BANCET_MSTP

PROTOCOLLO_BANCET _MSTP

PROTOCOL_BANCET_MSTP

PROTOCOL_OPTO22_MASTER

PROTOCOLE_OPTO22_ MAITRE

PROTOCOLO_OPTO022_MAESTRO

PROTOKOLL_OPTO22_ MEISTER

PROTOCOLLO_OPTO22_MASTER

PROTOCOL_OPTO22 MEESTER

PROTOCOL_MODBUS_MASTER

PROTOCOLE_MODBUS_MAITRE

PROTOCOLO_MODBUS_MAESTRO

PROTOKOLL_MODBUS_MEISTER

PROTOCOLLO_MODBUS_MASTER

PROTOCOL_MODBUS_MEESTER

Standard OpenBAS NX controllers have two communication ports; dual core
communication port. The COMM keyword is used to set up a communication port.

Default values are highlighted in green:
COMM [communication port 1, 2, 3]
PROTOCOL

Syntax:

DEVICE_ADDRESS
BAUD_RATE

PARITY

STOP_BIT

adds the third

PROTOCOL_ASCI1_TERMINAL, PROTOCOL OPTO_22 SLAVE,

PROTOCOL_N2_OPEN_SLAVE,
PROTOCOL_BANCET_MSTP,

PROTOCOL_MODBUS_MASTER,

1 to 253
2400, 4800, 9600, 19200, 38400, 57600, 76800

PARITY_NONE, PARITY_ODD, PARITY_EVEN
STOP_BIT_O, STOP. BIT 1

PROTOCOL_MODBUS_SLAVE,
PROTOCOL_OPT022_MASTER,

Note: Each one of the communication ports can be setup only one per script, so if a COMM keyword for
a given communication port is used an error will be generated.

Example:

Example:

Example:
Example:
Example:

Example:

COMM 1 PROTOCOL_BANCET_MSTP

BAUD_RATE = 38400

CoOMM 1

PROTOCOL_MODBUS_SLAVE

DEVICE_ADDRESS

DEVICE_ADDRESS

1
a1

1
iy

BAUD_RATE = 9600 PARITY_ODD STOP_BIT_1

CoOMM 1

coMMm 1

CoOMM 1

COMM 1 PROTOCOL_N2_OPEN_SLAVE

PROTOCOL_OPTO_22_SLAVE

DEVICE_ADDRESS

DEVICE_ADDRESS

PROTOCOL_ASCI1_TERMINAL BAUD_RATE = 9600

1
iy

10

PROTOCOL_MODBUS_MASTER BAUD_RATE = 19200 PARITY_ODD

eZ HVAC and building automation Wizard

Page 59

M. Mircom: g e PENBAS

Each of the communication ports can be as master or slave of the supported protocols of each port.

Example: COMM 2 PROTOCOL_ASCII_TERMINAL BAUD_RATE = 9600
Example: COMM 2 PROTOCOL_OPTO_22 SLAVE DEVICE_ADDRESS = 5
Example: COMM 2 PROTOCOL N2 OPEN_SLAVE DEVICE_ADDRESS = 5
Example: COMM 2 PROTOCOL_OPTO22 MASTER BAUD_RATE = 9600

On controllers with the dual installed the third communication port is available.

Example: COMM 3 PROTOCOL_OPTO 22 SLAVE DEVICE_ADDRESS = 5
Example: COMM 3 PROTOCOL_N2_OPEN_SLAVE DEVICE_ADDRESS = 5
Example: COMM 3 PROTOCOL_MODBUS_SLAVE DEVICE_ADDRESS = 5 \

BAUD_RATE = 9200 PARITY_NONE

Note: If the baud rate is changed, the new baud rate will not take effect until the controller is reset.

The reason for this is because the configuration of the communication port can be also done via the
communication port itself. If baud rate change were performed during the communication port
configuration there would be no way to finish and verify the configuration gracefully.

So the changes to the speed of the communication port will only take effect after a reset. Either
hardware or software invoked.

eZ HVAC and building automation Wizard Page 60

M, Mircom

OpenBAS

Building Automation System

Keyword:

WIRELESS_LINK

B

€

=

)

@

L

WIRELESS_LINK

LIAISON_SANS_FIL

ENLACE_INALAMBRICO

DRAHTLOSE_VERBINDUNG

COLLEGAMENTO_SENZA_FILI

DRAADLOZE_VERBINDING

WLS_GROUP

WLS_GRUPE

WLS_GRUPO

WLS_GRUPPE

WLS_GRUPPO

WLS_GROEP

WLS_ADDRESS

WLS_ADDRESSE

WLS_DIRECCION

WLS_ADDRESSE

WLS_INDIRIZZO

WLS_ADRES

Standard OpenBAS NX controllers can receive information sent from up to ten wireless thermostats if
the wireless 12C interface is installed.

The WIRELESS_LINK keyword aids in programming each one of the ten wireless links that can be active
at any given time.

To Configure 12C wireless interface takes the format:

Syntax: WIRELESS_LINK [1 to 10]
WLS_GROUP [1 to 10]
WLS_ADDRESS [1 to 199]

// Up to 10 wireless links can be created with groups set between 1-10
// and addresses 1-199
Example: WIRELESS LINK = 1 WLS GROUP = 1 WLS_ADDRESS = 1

// Up to 10 wireless links can be created with groups set between 1-10
// and addresses 1-199
Example: WIRELESS LINK 2 WLS GROUP 5 WLS_ ADDRESS 90

After the wireless links have been created, each of the parameters that the wireless transmitter sends
can be added as remote points using the REMOTE keyword that will be explained shortly.

eZ HVAC and building automation Wizard Page 61

M, Mircom

OpenBAS

Building Automation System

Keyword:

REMOTE

e

¢

®

@

@

oL

REMOTE

ELOIGNE

REMOTO

FERNPUNKT

PUNTO_A_DISTANZA

AFGELEGEN

READ_COIL

READ_COIL

READ_COIL

READ_COIL

READ_COIL

READ_COIL

READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_STATUS

READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_INPUT_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

READ_HOLDING_REGISTER

ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

ANALOG_VALUE

BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

BINARY_VALUE

NX_SLAVE

NX_ESCLAVE

NX_ESCLAVO

NX_SLAVE

NX_SCHIAVO

NX_SLAAF

DEVICE_ADDRESS

ADDRESSE_COM

DIRECCION_COM

REGLERADRESSE

INDIRIZZO_DISPOSITIVO

CONTROLLER_ADRES

Once a communication port has been set up as a master, the REMOTE points can be added so the

master starts polling the information. Normally the master reads the set up remote points and keeps the

remote table updated with the most recent value of the slave device.

However when a remote point is written via a communication port or the PLC issues a write to a remote

point, the logic in the master port will instead write the remote point to the slave with the contents

stores in the remote point value register.

Add remote points to the mapping table with the following format for wired remote points:

Syntax:

Example:

REMOTE
COMX
[OPERAND_1]
DEVICE_ADDRESS
[NAME]

Communication port COM1, COM2 or COM3

Database object or protocol dependant type
Device address based on protocol limits
Optionally a name can be given after the remote
point and it will be automatically added as a

DEVICE_ADDRESS 1 OAT
100 DEVICE_ADDRESS 1 Z TEMP

25 DEVICE_ADDRESS 1 ALARM

label

REMOTE COM1 READ_INPUT REGISTER 1
REMOTE COM1 READ_HOLDING_REGISTER
REMOTE COM1 READ_COIL

REMOTE COM2 NX_ SLAVE DEVICE_ADDRESS
REMOTE COM2 NX_ SLAVE DEVICE_ADDRESS
REMOTE COM2 Al_1 DEVICE_ADDRESS
REMOTE COM2 Al _2 DEVICE_ADDRESS
REMOTE COM2 BO_ 1 DEVICE_ADDRESS
REMOTE COM2 BO_10 DEVICE_ADDRESS
REMOTE COM3 NX_ SLAVE DEVICE_ADDRESS
REMOTE COM3 NX_ SLAVE DEVICE_ADDRESS
REMOTE COM3 Al_1 DEVICE_ADDRESS
REMOTE COM3 Bl 1 DEVICE_ADDRESS

100
101

a ok

103
104

SLAVE_1
SLAVE_2
PRESSURE

ANOTHER_SLAVE

TEMPERATURE
START_SIGNAL

eZ HVAC and building automation Wizard

Page 62

M, Mircom

OpenBAS

Building Automation System

Besides wired remote points that will communicate over the controllers field buses, OpenBAS

controllers can also map wireless points that come into the system via the 12C wireless adapter. On the

previous page prior to the REMOTE keyword we learned how to create WIRELESS_LINKS.

Keywords:

Parameters to map wireless parameters into remote points

e

€D

®

@

WL

L

WIRELESS_LINK

LIAISON_SANS_FIL

ENLACE_INALAMBRICO

DRAHTLOSE_VERBINDUNG

COLLEGAMENTO_SENZA_FILI

DRAADLOZE_VERBINDING

WLS_TEMP_C WLS_TEMP_C WLS_TEMP_C WLS_TEMP_C WLS_TEMP_C WLS_TEMP_C
WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F WLS_TEMP_F
WLS_REL_HUM WLS_HUM_REL WLS_HUM_REL WLS_REL_FEUCHTIGKEIT WLS_UMIDITA_REL WLS_REL_VOCHTIGHEID
WLS_MODE WLS_MODE WLS_MODO WLS_MODUS WLS_MODALITA WLS_MODE
WLS_FAN_SPEED WLS_VEL_VENTILATEUR WLS_VEL VENTILADOR _|LS_LUFTER_GESCHWINDIGKE| WLS_VELOCITA_VENT WLS_VENT_SNELHEID
WLS_KEYBOARD WLS_CLAVIER WLS_TECLADO WLS_TESTATUR WLS_TESTIERA WLS_TOETSENBORD
WLS_SP_TEMP WLS_PC_TEMP WLS_PA_TEMP WLS_SP_TEMP WLS_SP_TEMP WLS_SP_TEMP
WLS_SP_HUM WLS_PC_HUM WLS_PA_HUM WLS_SP_FEUCHTIGKEIT WLS_SP_UMIDITA WLS_SP_VOCHTIGHEID
WLS_SP_T1 WLS_PC_T1 WLS_PA_T1 WLS_SP_T1 WLS_SP_T1 WLS_SP_T1
WLS_SP_PB WLS_PC_BP WLS_PA_BP WLS_SP_PB WLS_SP_PB WLS_SP_PB

WLS_SP_UNOCC

WLS_PC_INOCCUPE

WLS_PA_DESOC

WLS_SP_UNBESETZ

WLS_SP_DISOCCUPATO

WLS_SP_ONBEZET

WLS_BATTERY_VOLTAGE

WLS_VOLTAGE_BATTERIE

WLS_VOLTAJE_BATERIA

WLS_BATTERIESPANNUNG

WLS_VOLTAGIO_BATTERIA

WLS_BATTERI_VOLTAGE

WLS_AUX_INP

WLS_ENT_AUX

WLS_ENT_AUX

WLS_AUX_EIN

WLS_AUX_ING

WLS_AUX_ING

WLS_LINK_TMR

WLS_TM_LIEN

WLS_TM_ENLACE

WLS_LINK_TMR

WLS_LINK_TMR

WLS_LINK_TMR

WLS_SEC_LINK_LOST

WLS_SEC_SANS_LIEN

WLS_SEC_SIN_ENLACE

WLS_SEK_KEIN_LINK

LS_SEC_SENSA_COLLEGAMEN]

LS_SEC_ZONDER_KOPPELIN(

Once a wireless link is created it is easy to add the parameters that the wireless transmitters have. They

can be added to the REMOTE points using the following format so they will get mapped into the wired

REMOTE points tabled and can be used elsewhere in the system:

Only COM2 point table supports wireless points
Database object or protocol dependant type
Make a reference to an existing wireless links

Syntax: REMOTE
COM2
[OPERAND_17]
WIRELESS LINK

Example: REMOTE COM2 WLS TEMP_C
REMOTE COM2 WLS_TEMP_F
REMOTE COM2 WLS HUM REL
REMOTE COM2 WLS TEMP_C
REMOTE COM2 WLS_TEMP_F
REMOTE COM2 WLS HUM REL

There are the standard 50 remote points available with standard memory:

e RMT_1..51

WIRELESS_LINK 1

WIRELESS_LINK
WIRELESS_LINK

WIRELESS_LINK
WIRELESS_LINK
WIRELESS_LINK

1
1

NN

420 additional remote points are available for dual core or if 32KKNV expansion memory is installed:

e RMT_51..255

e RES_FLT_41...255 € these registers can be indistinctively used as either REMOTE points or
standard RES_FLT result registers.

eZ HVAC and building automation Wizard

Page 63

M, Mircom g e PENBAS

For wired protocols the following lists show the kind of objects that can be mapped into REMOTE points:

Standard regions for N2_OPEN and OPTO22

REGION_ERROR // Invalid (OR NULL) region
Al // (1..40) Analog Inputs
Bl // (1..10) Binary Inputs
AO // (1..10) Analog Outputs
BO // (1..40) Binary Outputs
ADF // (1..100 xee) (101..140 ram) Internal RES FLT
ADI // (1..100 xee) (101..116 ram) Timers
ADB // (1..100 xee)
Additional regions for OPTO22 to support slave devices
NX_SLAVE

Additional regions for Wireless remote points

WLS_TEMP_C
WLS_TEMP_F
WLS_REL_HUM
WLS_MODE
WLS_FAN_SPEED
WLS_KEYBOARD
WLS_SP_TEMP
WLS_SP_HUM
WLS_SP_T1
WLS_SP_PB
WLS_SP_UNOCC
WLS_BATTERY_VOLTAGE
WLS_AUX_INP
WLS_LINK_TMR
WLS_SEC_LINK_LOST

Modbus types supported
READ_COIL
READ_INPUT_STATUS
READ_INPUT_REGISTER
READ_HOLDING_REGISTER

BACnet types supported

ANALOG_VALUE
BINARY_VALUE

eZ HVAC and building automation Wizard Page 64

M. Mircom: g e PENBAS

Keyword: AI_CONFIGURATION
Keyword: AI_CALIBRATION

& &» © o @ | I

Al_CONFIGURATION EA_CONFIGURATION EA_CONFIGURACION AE_KONFIGURATION IA_CONFIGURAZIONE IA_CONFIGURATIE
Al_CALIBRATION EA_ETALONNAGE EA_CALIBRACION AE_KALIBRIERUNG |A_CALIBRAZIONE |A_KALIBRIERING

Universal inputs can be used as either digital or analog inputs, in order to get correct readings from the
analog inputs. They must be configured correctly with the Al_ CONFIGURATION to set their operating
mode and with Al_CALIBRATION to set their calibration value.

Also keep in mind that each universal input has an associated JEICA\ELRIAANIE, | that has to be set
to m if used with resistive type temperature sensors, and m to all other analog types.

Use the following format to set up analog inputs:
Syntax: AIl_CONFIGURATION Al_1 = 1 Al_CALIBRATION = 1.000

The following list gives the constant for each analog input type:
e TYPE_12bit 0 // ADC 12-bits : 0 - 4095
e TYPE_1kNI_C // 1000 ohms Nickel °C
e TYPE_1kSI_C // 1000 ohms Silicon °C IAWre:ENe]\
e TYPE_1kA99 _C // 1000 ohms A99 °C
e TYPE_O 10 vdc // 0-10.0 vdc or (0-20 ma. @250 ohms)
e TYPE_4 20 ma // 4-20ma @ 250 ohms
e TYPE_1kNI_F // 1000 ohms Nickel °F
e TYPE_1kSI_F // 1000 ohms Silicon °F
o TYPE_1KA99_F // 1000 ohms A99 °F
e TYPE_RATIO // Ratiometric 0-100% = 10-90 FSR = 0.5-4.5 VDC
e TYPE_TERMOCOUPLE J 10 // Type J thermocouple, 51.7 uV/°C x191 amp
e TYPE_TERMOCOUPLE_K 11 // Type K thermocouple, 40.6 uV/°C x191 amp
e TYPE_ST_S3K 10K 12 // NTC Kele OK Ohms @ 25°C Type 111

© 00N O Ul WDN P

e TYPE_TC 1000 1 13 // TC current transformer NX5-SF 1000:1 ratio;
Example: Al_CONFIGURATION Al_1 = 1 AI_CALIBRATION = 0.000
Al_CONFIGURATION Al_4 = 1 AI_CALIBRATION = 10.000

For additional information regarding wiring and calculation for calibration value for the analog inputs,
read the OpenBAS NX manual.

The eZ App wizard automatically generates preconfigured analog inputs configuration and calibration
based on the chosen application.

eZ HVAC and building automation Wizard Page 65

M. Mircom: g e PENBAS

Keyword: PLC_COUNTER

& ®» © o o | T

PLC_COUNTER AJUSTER_INSTRUCTION_PLC| AJUSTE_INSTRUCCION_PLC PLC_ZAEHLER_SET PLC_CONTATORE_SET PLC TELLER_SET

The PLC_COUNTER keyword is used to provide for additional blank space between instructions, the
compiler usually auto increments its counter when generating PLC instructions from the compiled

expressions.

However if some code is needed at a specific address which could be a case for subroutines, this
keyword comes handy to read just the PLC counter.

The only limitation is the plc counter given should be higher than the current PLC counter or an error
would be generated due to an overlapping in memory addresses,

Syntax: PLC_COUNTER [NEW PLC COUNTER ADDRESS] The range is 1-400

// Adjusts PLC counter to a new number, must be higher than current PLC
// instruction counter
Example: PLC_COUNTER 100

// The next example shows how subroutines TWO and TWO2 are located at
// absolute PLC addresses 200 and 300 respectively

[PROGRAM_START]

CALL TwO

CALL Two2

RES BIT_1 = LT _GROUP BO_1 BO 2 BO_3 BO_4 BO_ 5 BO_6 BO_7 BO_8
RES BIT_2 = LT_GROUP BO_9 BO_10 BO_11 BO_12

END // Main program ends here

PLC_COUNTER 200 // Change PLC counter to place TWO @ address 200
SUB _BEGIN [TWO] // Will add END before SUB to prevent runaway code
BO_41 = LT_GROUP BO_20_BO 21 BO_22
BO_42 = LT_GROUP BO_23 BO_24 BO_25
SUB_END

PLC_COUNTER 300 // Change PLC counter to place TWO2 @ address 300

SUB BEGIN [TwO2] // Will add END before SUB to prevent runaway code
AO_1 = 50

SUB_END

eZ HVAC and building automation Wizard Page 66

M, Mircom

OpenBAS

Building Automation System

Keyword:

E_MAIL

e

¢

®

)

@

ML

E_MAIL

E_MAIL

E_MAIL

E_MAIL

E_MAIL

E_MAIL

Send e-mail based on a given condition, up to 4 mails can be programmed per OpenBAS-NWK-ETH3 or
OpenBAS-NWK-XP Ethernet web server with the E_MAIL keyword.

Syntax: E MAIL [OPERAND 1 trigger]

TO [MAIL ADDRESS RECEPIENT (50 chars)]

CC [MAIL ADDRESS RECEPIENT (50 chars)]

BCC [MAIL ADDRESS RECEPIENT (50 chars)]
Syntax: E_MAIL E_MAIL_SUBJECT [SUBJECT STRING (100 chars)]
Syntax: E_MAIL E_MAIL_BODY [SUBJECT STRING (190 chars)]
Example: E_MAIL RES_BIT_1 TO rmedina@mircomgroup.com \

CC rikmed@prodigy.net._mx \
BCC nx5-net@rikmed.com

E MAIL E_MAIL _SUBJECT This is a sample message sent by e-mail

E_MAIL E_MAIL_BODY Will be sent when the trigger register \

is = 1, up to 160 characters can be added

In order to send an e-mail, besides setting the controller with an IP or it can be automatically provided,
the network Ethernet switch it is connected to should have connectivity to the internet, and any
firewall’s limitations to access the mail server for sending mails using the SMTP on the needed port
should be removed by IT administrators.

eZ HVAC and building automation Wizard Page 67

M, Mircom

OpenBAS

Building Automation System

Keyword:

SMS_TEXT

o

€

®

)

@

A

SMS_TEXT

TEXTE_SMS

SMS_TEXTO

SMS_TEXT

SMS_TESTO

SMS_TEKST

Send SMS text message based on a given condition, up to 20 SMS different text messages can be sent
per each OpenBAS-NWK-SMS text message generator via SMS/GSM cellular network using the
SMS_TEXT keyword.

The format to send an SMS message is as follows:

Syntax: SMS_TEXT [OPERAND 1]
TO [PHONE NUMBER]
SMS_REPEAT [0..10]
SMS_RATE [1..255 minutes]

SMS_TEXT [100 char SMS message]

SMS_TEXT RES_BIT_1 TO +5215538213626
SMS_REPEAT 3
SMS_RATE 5
SMS_TEXT Alarm has been activated

Example:

7 7 7

Prior to sending SMS text messages, an OpenBAS-NWK-SMS text message generator should have a valid
SIM card installed with enough balance to be able to send the messages. Also the GSM/SMS antenna
should be installed to the module and coverage from the cellular company the SIM card is attached to,

should be available.

eZ HVAC and building automation Wizard Page 68

M, Mircom

OpenBAS

Building Automation System

Annex A, Compiler errors listing

The script compiler generates an error if any of the keywords or parameters are incorrect. Following is a

comprehensive lists of the registered errors. For more information on each keyword syntax and rules

refer to the detailed keyword description.

ERR_001_SCRIPT FILES_1_TO_10:
ERR_002_UKNOWN_TARGET_HARDWARE :
ERR_003_MAX_TOKENS_PRE_PROCESS:
ERR_004_MAX_TOKENS_2_PRE_PROCESS:
ERR_005_LINE_LENGTH_EXCEEDED:
ERR_006_TOKEN_DECODE :
ERR_007_READING_TOKEN_ARRAY:
ERR_008_READING_PROCESSING_KEYWORD:
ERR_009_ERROR_PROCESSING_EXPRESSION:
ERR_010_INCORRECT TOKEN_SEQUENCE:
ERR_011_NUMBER_OF_TOKENS_EXCEEDED:

ERR_©12_UNEXPECTED_END_OF FILE:

ERR_©13_POST_PROCESSOR_LINE_LENGTH_EXCEEDED:

ERR_014 DEFINED_LABEL_IS_SAME_AS_KEYWORD:
ERR_015_DEFINED_LABEL_IS_SAME_AS_DB_OBJECT:
ERR_016_MAX_LABELS_EXCEEDED:
ERR_017_UKNOWN_TOKEN:

ERR_©18_ERROR_DEFINING NEW_LABEL:

ERR_019_ DATABASE_VARIABLE_INCORRECT:

SCRIPT NUMBER <1 or >10.

UKNOWN TARGET HARDWARE

MAX_TOKENS ERROR (preProcessLine())
MAX_TOKENS ERROR2 (printTokens())
LINE LONGER THAN 250 CHARACTERS
TOKEN DECODE ERROR

ERROR READING TOKEN ARRAY

ERROR PROCESSING KEYWORD []

ERROR PROCESSING EXPRESSION
INCORRECT TOKEN SEQUENCE

NUMBER OF TOKENS EXCEEDED

UNEXPECTED END OF FILE FOUND IN CURRENT
LINE {EOF}

POST PROCESSOR, LINE SIZE EXCEEDED 250
CHARACTERS

LABEL [] IS SAME AS KEYWORD

LABEL [] IS SAME AS DATABASE OBJECT
NUMBER OF LABELS EXCEEDED

UKNOWN TOKEN []

SYNTAX TO DEFINE A NEW EQUATE LABEL IS
INCORRECT

DATABASE VARIABLE INCORRECT

eZ HVAC and building automation Wizard

Page 69

M, Mircom

OpenBAS

Building Automation System

ERR_020_CUSTOM_ID_LABEL_SAME_AS_KEYWORD:
ERR_021_MAX_DEFINITIONS_EXCEEDED:
ERR_022_WRONG_SYNTAX_IF_KEYWORD:
ERR_023_WRONG_SYNTAX_JUMP_KEYWORD:

ERR_024 WRONG_SYNTAX_CALL_KEYWORD:

ERR_025_INCORRECT TOKEN_OR_OPERAND_1st_ TOKEN:

ERR_026_LEFT_OPERAND_IS_NOT_WRITEABLE:

ERR_027_INCORRECT_ASSIGNMENT_OPERATOR:

ERR_028_MISSING_ASSIGNMENT_OPERATOR:

ERR_029_COMPLEX_MATH_NOT_SUPPORTED:
ERR_030_INCORRECT MATH_OPERATOR:

ERR_031_MATH_EXPRESSION_EXCEEDS_OPERANDS:

ERR_©32_INVALID_OPERAND_FOUND_IN_EXPRESSION:

ERR_033_NUMBER_OF_OPERANDS_EXCEEDED:

ERR_©34_INVALID_OPERAND_IN_EXPRESSION:
ERR_O35_NUMBER_OPERATORS_EXCEEDED_BOOLEAN:
ERR_©36_INVERT_TAKES_ONE_OPERAND_ONLY:

ERR_©37_INVALID_OPERAND_IN_INVERT:

ERR_©38_XOR_TAKES_ONLY_TWO_OPERANDS :

ERR_039_XOR_INVALID_ OPERAND:

CUSTOM ID LABEL IS SAME AS KEYWORD
NUMBER OF CUSTOM DEFINITIONS EXCEEDED
WRONG SYNTAX IN 'IF' KEYWORD

WRONG SYNTAX IN 'JUMP' KEYWORD

WRONG SYNTAX IN ‘CALL' KEYWORD

INCORRECT KEYWORD OR OPERAND [] IN FIRST
TOKEN IN LINE

LEFT OPERAND IS NOT WRITEABLE (IT IS READ
ONLY)

INCORRECT ASSIGNMENT OPERATOR FOLLOWING
DATA BASE OBJECT

MISSING ASSIGNMENT OPERATOR FOLLOWING
DATA BASE OBJECT

COMPLEX MATH NOT SUPPORTED
INCORRECT MATH OPERATOR FOLLOWING OPERAND

MATH EXPRESSION EXCEEDS NUMBER OF
OPERANDS

INVALID OPERAND FOUND IN EXPRESSION

NUMBER OF OPERANDS EXCEEDED FOR MATH
OPERATION

INVALID OPERAND FOUND IN EXPRESSION
NUMBER OF OPERANDS EXCEEDED: BOOLEAN
INVERT INSTRUCTION TAKES ONLY ONE OPERAND

INVALID OPERAND FOUND IN INVERT
INSTRUCTION

XOR/NXOR INSTRUCTION TAKES ONLY TWO
OPERANDS

INVALID OPERAND FOUND IN XOR/NXOR
INSTRUCTION

eZ HVAC and building automation Wizard

Page 70

M, Mircom

OpenBAS

Building Automation System

ERR_040_AND_OR_NEEDS_FOUR_OPERANDS :

ERR_041_AND_OR__INVALID OPERAND:

ERR_042_SET_RESET_NEEDS_TWO_OPERANDS:

ERR_043_START_STOP_EMRG_NEEDS_THREE_OPERANDS :

ERR_044_START_STOP_EMRG_INVALID_OPERAND:

ERR_045_SET_RESET_WRONG_SYNTAX:

ERR_046_START_STOP_MISSING_EMERG_STOP:

ERR_047_IN_OUTSIDE_ERROR_IN_FLAG_PARAMETER:

ERR_048_IN_OUTSIDE_TAKES_3_4 OPERANDS:

ERR_049 HYSTERESIS_TAKES_THREE_OPERANDS:

ERR_050_IN_OUT_HYST_WRONG_OPERAND:

ERR_©51_NUMBER_OF_SCHEDULES_EXCEEDED:

ERR_052_SCHEDULES_WEEK_FLAG_FORMAT_ERROR:

ERR_053_SCHEDULES_WRONG_DATE:

ERR_054_SCHEDULES_WRONG_SYNTAX:

ERR_O©55_UNHANDLED_KEYWORD:

ERR_056_RUNAWAY_EXPRESSION:

AND_OR/AND_NOR INSTRUCTION TAKES ALWAYS
FOUR OPERANDS

INVALID OPERAND FOUND IN AND_OR/AND_NOR
INSTRUCTION
SET/RESET INSTRUCTION TAKES ALWAYS TWO

OPERANDS

START/STOP[/EMRG_STOP] INSTRUCTION TAKES
TWO OR THREE OPERANDS

INVALID OPERAND FOUND IN SET/RESET OR
START/STOP INSTRUCTION

SET/RESET WRONG SYNTAX

START/STOP/EMRG_STOP MISSING EMERGENCY
STOP 'EMRG_STOP' KEYWORD

INSIDE/OUTSIDE INSTRUCTIONS ERROR IN
INVERT FLAG PARAMETER

INSIDE/OUTSIDE INSTRUCTIONS TAKE THREE OR
FOUR OPERANDS

HYSTERESIS INSTRUCTION TAKES ALWAYS THREE
OPERANDS

INVALID OPERAND FOUND IN
INSIDE/OUTSIDE/HYSTERESIS INSTRUCION

NUMBER OF SCHEDULES EXCEEDED

SCHEDULE, DAYS OF WEEK FLAG FORMAT ERROR
{--==-=-- } {mtwtfssH}

SCHEDULE, WRONG DATE, DAYS MUST BE 1 TO
29,30,31 DEPENDING ONMONTH,
AND MONTH 1 TO 12

SCHEDULE, WRONG SYNTAX

UNHANDLED KEYWORD AFTER '=' OPERAND

RUNAWAY EXPRESSION TRAP

eZ HVAC and building automation Wizard

Page 71

M, Mircom

OpenBAS

Building Automation System

ERR_©57_WRONG_TIME_FORMAT DELIMITER:

ERR_058_WRONG_TIME_FORMAT:

ERR_059_WRONG_TIME_RANGE :

ERR_060_INCORRECT TIMER_NUMBER:

ERR_061_TOKEN_SHOULD_BE_FLOAT_CONSTANT:

ERR_062_STACK_FOR_CONSTANT_FLOATS_EXCEEDED:

ERR_063_ADI_TO_STORE_TIMER_MUST BE_1_TO_100:

ERR_064_WRONG_SYNTAX_ASSIGNING_ ADI_VALUE:

ERR_065_TIMER_WRONG_SYNTAX:

ERR_066_TIMER_NUMBER_MISMATCH:

ERR_067_TIMER_OSC_FREQ_OUTPUT_WRONG_TYPE:

ERR_068_TIMER_0SC_FREQ OUTPUT_WRONG_VALUE:

ERR_069_INCORRECT ASSGN_OPER_AFTER_THEN:

ERR_070_INCORRECT LEFT_OPER_CANT_WRITE:

ERR_071_RUN_LOAD_TO BE_USED_ONLY_WITH_TMRS:

ERR_072_ONLY_ONE_ELSE_PER_IF:

SCHEDULE, WRONG TIME FORMAT DELIMITER
{hh:mm} IN 24 HOUR FORMAT
{0:00} to {23:59}

SCHEDULE, WRONG TIME FORMAT {hh:mm}
IN 24 HOUR FORMAT {0:00} to {23:59}

SCHEDULE, WRONG TIME RANGE {hh:mm}
IN 24 HOUR FORMAT {@:00} to {23:59}

TIMER, INCORRECT TIMER NUMBER, MUST BE
1 T0 16

TOKEN SHOULD BE A FLOAT CONSTANT (K_FLT)

STACK TO STORE CONSTANT FLOATS IS
EXCEEDED

ADI TO STORE TIMER MUST BE 1 TO 100

TIMER, WRONG SYNTAX ASSIGNING ADI VALUE,
MUST BE 1 TO 9999

TIMER, WRONG SYNTAX OR WRONG NUMBER OF
PARAMETERS

TIMER NUMBER MISMATCH, RIGHT SIDE OF '='
DOESN'T MATCH TIMER IN RIGHT SIDE
OF EXPRESSION

FREQUENCY CONVERTERS AND OSCILATORS CAN
ONLY OUTPUT PULSES TO: RES_BIT,
BINARY OUTPUTS OR TIMER_STATUS

TIMER, WRONG VALUE FOR OSCILATOR OR
FREQUENCY CONVERTER, MUST BE 1 TO 999

INCORRECT ASSIGNMENT OPERATOR AFTER
THEN KEYWORD

INCORRECT LEFT OPERAND, HARDWARE INPUTS
CAN'T BE WRITTEN

RUN AND LOAD IS TO BE USED ONLY WITH
TIMERS

ONLY ONE ELSE KEYWORD IS ALLOWED PER IF
STATEMENT

eZ HVAC and building automation Wizard

Page 72

M, Mircom

OpenBAS

Building Automation System

ERR_073_ONLY_ONE_THEN_PER_IF:

ERR_074_PLC_CURRENT_INSTRUCTION_ERROR:

ERR_075_LINK_ERROR_LABEL_NOT_FOUND:

ERR_076_LINK_JUMP_OUTSIDE_RANGE:

ERR_077_LINK_CALL_OUTSIDE_RANGE:

ERR_078_WRONG_EEPROM_INITIALIZATION_SYNTAX:

ERR_079_WRONG_EEPROM_VALUE :

ERR_080_PID _WRONG_SYNTAX:

ERR_081_PID_EEPROM_STORAGE_OUT_OF_RANGE:

ERR_0©82_WRONG_OUTPUT_REGION_SELECTED:

ERR_0©83_LIGHTING_GROUP_WRONG_SYNTAX:

ERR_084_SUB_BEGIN_NEEDS_LABEL:

ERR_085_PLC_COUNTER_SET_WRONG_SYNTAX:

ERR_086_PLC_COUNTER_WRONG_VALUE:

ERR_087_DEFINED_LABEL_IS DUPLICATED:

ERR_088_FILE_REPOSITIONING_ ERROR:

ERR_089_ERROR_OPENING DB_FILE:

ERR_090_PLC_DECODING_ERROR_MAP_FILE:

ONLY ONE THEN KEYWORD IS ALLOWED PER IF
STATEMENT

LINKER, PLC CURRENT INSTRUCTION OUTSIDE
1-400 RANGE

LINKER, LABEL NOT FOUND FOR JUMP OR CALL
INSTRUCTION

LINKER, JUMP EXCEEDS 200 INSTRUCTIONS OR
NEGATIVE JUMP OR ABOVE INSTRUCTION 400

LINKER, CALL LIES OUTSIDE 1-400
INSTRUCTION RANGE

EEPROM, WRONG INITIALIZATION SYNTAX

EEPROM, INITIALIZATION VALUE OUTSIDE
RANGE FOR TYPE

PROPORTIONAL CONTROL, WRONG SYNTAX

PROPORTIONAL CONTROL, PARAMETERS EEPROM
STORAGE OUT OF RANGE

PROPORTIONAL CONTROL, OUPTUT MUST BE
ANALOG OUTPUT OR RESULT FLOAT REGISTER

LIGHTING GROUP WRONG SYNTAX

SUBROUTINE KEYWORD NEEDS AN ID LABEL SUCH
AS: SUB_BEGIN [ID_LABEL]

PLC COUNTER SET WRONG SYNTAX

PLC COUNTER SET WRONG VALUE, MUST BE
HIGHER THAN CURRENT COUNTER

DEFINED LABEL IS DUPLICATED, IT HAS
ALREADY BEEN DEFINED BEFORE

LINK FILE REPOSITIONING ERROR

OPENING DATA BASE FILE FOR WRITING
RETURNED ERROR

DECODING PLC INSTRUCTION FROM MAP FILE
NOT POSSIBLE

eZ HVAC and building automation Wizard

Page 73

M, Mircom

OpenBAS

Building Automation System

ERR_091_ADX_DUPLICATED_INITIALIZATION:

ERR_092_PLC_DECODING_ERROR_RESULT_REGISTER:

ERR_093_PLC_DECODING_ERROR_OPERAND:

ERR_094_PLC_DECODING_INSTRUCTION_TYPE:

ERR_095_LABEL_HAS_INCORRECT DATABASE_OBJECT:

ERR_096_DUPLICATE_INDEXED_LABEL:

ERR_097_TOTALIZER_WRONG_SYNTAX:

ERR_098_TOTALIZER_WRONG_PARAMETR_RANGES :
ERR_099_TOTALIZER_WRONG_INPUT OPERAND:
ERR_100_ALTERNATOR_WRONG_SYNTAX:

ERR_101_ALTERNATOR_WRONG_PROCESS_VARIABLE:

ERR_102_ALTERNATOR_WRONG_INDEX_TO_FIRST_OUTPUT:

ERR_103_ALTERNATOR_WRONG_NUMBER_OF_STAGES:

ERR_104_ALTERNATOR_WRONG_EEPROM_PARAMETER_INDEX:

ERR_105_ALTERNATOR_WRONG_LEADER:

ERR_106_ALTERNATOR_WRONG_TIMER_SELECTED:

ERR_107_ALTERNATOR_WRONG_FEEDBACK_SELECTED:

ERR_108_ALTERNATOR_WRONG_EXTERNAL_ENABLE:

ERR_109_ALTERNATOR_WRONG_SP_OR_PB:

CURRENT VARIABLE HAS DUPLICATE
INITIALIZATION

WRONG RESULT REGISTER DECODING PLC
INSTRUCTION FROM MAP FILE

WRONG OPERAND WHEN DECODING PLC
INSTRUCTION FROM MAP FILE

UKNOWN INSTRUCTION TYPE WHEN DECODING PLC
INSTRUCTION FROM MAP FILE

LABEL DEFINED HAS INCORRECT DATA BASE
OBJECT TYPE IN MAP FILE

DUPLICATE INDEXED LABEL WAS FOUND IN MAP
FILE

TOTALIZER, WRONG SYNTAX

TOTALIZER, WRONG OPERAND RANGES
TOTALIZER, WRONG INPUT OPERAND
ALTERNATOR, WRONG SYNTAX

ALTERNATOR, WRONG PROCESS VARIABLE
ALTERNATOR, WRONG INDEX TO FIRST OUTPUT
ALTERNATOR, WRONG NUMBER OF STAGES

ALTERNATOR, WRONG EEPROM STORAGE
PARAMETER

ALTERNATOR, WRONG LEADER OR LEADER
> NUMBER OF STAGES

ALTERNATOR, WRONG TIMER SELECTED FOR
NEXT STAGE OR ALARM

ALTERNATOR, WRONG FEEDBACK SELECTED

ALTERNATOR, WRONG EXTERNAL ENABLE
SELECTED

ALTERNATOR, WRONG SET POINT OR
PROPORTIONAL BAND VALUES

eZ HVAC and building automation Wizard

Page 74

M, Mircom

OpenBAS

Building Automation System

ERR_110_ALTERNATOR_TIMERS_ARE_SAME_NUMBER:

ERR_111_ALT_FEEDBACK_EXT_ENABLE_MISMATCH:

ERR_112_ALTERNATE_MISSING_ SP_PB:

ERR_113_HOUR_COUNTER_WRONG_SYNTAX:

ERR_114_HOUR_COUNTER_WRONG_LEFT_OPERAND:

ERR_115_HOUR_COUNTER_RES_AND_PARTIAL_ARE_SAME:

ERR_116_HOUR_COUNTER_EEPROM_PARAMETER_INDEX:

ERR_117_AHU_STAGE_WRONG_SYNTAX:
ERR_118_AHU_STAGE_WRONG_PROCESS_VARIABLE:
ERR_119 AHU_STAGE_WRONG_SET_POINT:

ERR_120_AHU_STAGE_WRONG_PROPORTIONAL_ BAND:

ERR_121_AHU_STAGE_WRONG_TIMER_MINIMUM OFF:

ERR_122_AHU_STAGE_WRONG_TIMER_MINIMUM ON:

ERR_123_AHU_STAGE_WRONG_TIMER_INTERSTAGE:

ERR_124 AHU_STAGE_WRONG_OUTPUT:

ERR_125_AHU_STAGE_WRONG_EEPROM_PARAMETER_INDEX:

ERR_126_AHU_STAGE_WRONG_PB:

ERR_127_AHU_STAGE_DUPLICATE_TIMERS:

ALTERNATOR, IF TIMERS ARE ACTIVE THEY
CAN'T BE THE SAME REGISTER

ALTERNATOR, MISMATCH WITH FEEDBACK AND
EXTERNAL ENABLE INPUT OPERANDS

ALTERNATOR, MISSING SET POINT AND PROP.
BAND WITH ANALOG PROCESS VALUE

HOUR COUNTER, WRONG SYNTAX

HOUR COUNTER, WRONG LEFT OPERAND, MUST BE
RES_FLT

HOUR COUNTER, RESULT REGISTER AND PARTIAL
COUNTER CAN'T BE THE SAME REGISTER

HOUR COUNTER, WRONG EEPROM STORAGE
PARAMETER

AHU STAGE, WRONG SYNTAX
AHU STAGE, WRONG PROCESS VARIABLE
AHU STAGE, WRONG SETPOINT

AHU STAGE, WRONG PROPORTIONAL BAND
(DIFFERENTIAL)

AHU STAGE, WRONG MINIMUM OFF TIMER
SELECTED

AHU STAGE, WRONG MINIMUM ON TIMER
SELECTED

AHU STAGE, WRONG MINIMUM INTERSTAGE TIMER
SELECTED

AHU STAGE, WRONG OUTPUT OPERAND ON LEFT
OF '='

AHU STAGE, WRONG EEPROM STORAGE PARAMETER

AHU STAGE, WRONG SETPOINT OR PROPORTIONAL
VALUES

AHU STAGE, WRONG DUPLICATE TIMERS
SELECTED FOR ON, OFF OR INTERSTAGE TIMERS

eZ HVAC and building automation Wizard

Page 75

M, Mircom

OpenBAS

Building Automation System

ERR_128_AHU_STAGE_MISSING_REQUIRED_PARAMETERS:

ERR_129_TREND_WRONG_DATABASE_OBJECT:

ERR_130_TREND_WRONG_TIME_SAMPLING_PERIOD:

ERR_131_TREND_MAXIMUM_NUMBER_OF_TRENDS_EXCEEDED:

ERR_132_TREND_WRONG_SYNTAX:

ERR_133_TREND_HAS_INCORRECT_DATABASE_OBJECT:

ERR_134_TREND_HAS_INCORRECT_INTERVAL:

ERR_135_SCHEDULES_MAP_FILE_WRONG_INDEX:

ERR_136_SCHEDULES_MAP_FILE_WRONG_SYNTAX:

ERR_137_SCHEDULES_MAP_FILE_WRONG_DESTINATION OP:

AHU STAGE, SOME OF THE REQUIRED
PARAMETERS ARE MISSING

TREND, WRONG DATABASE OBJECT

TREND, WRONG SAMPLING TIME PERIOD, MUST
BE 1, 5, 10, 15, 20, 30 OR 60 MINUTES
TREND, NUMBER OF GRAPHS (16) EXCEEDED
TREND, WRONG SYNTAX

TREND, TRAND IN MAP FILE HAS INCORRECT
DATABASE OBJECT

TREND, TREND IN MAP FILE HAS INCORRECT
INTERVAL

SCHEDULES, MAP FILE WRONG INDEX
SCHEDULES, MAP FILE WRONG SYNTAX

SCHEDULES, MAP FILE INCORRECT
DESTINATION OPERAND

ERR_138_SCHEDULES_MAP_FILE_WRONG_DESTINATION_B: SCHEDULES, MAP FILE INCORRECT DESTINATION

OPERAND FOR BINARY SCHEDULE

ERR_139_SCHEDULES_MAP_FILE_WRONG_DESTINATION_A: SCHEDULES, MAP FILE INCORRECT

ERR_140_REMOTE_POINT_WRONG_SYNTAX:

ERR_141_REMOTE_POINT_WRONG_ADDRESS_OR_NUMBER:

ERR_142_REMOTE_POINT_WRONG_TYPE_OR_SYNTAX:

ERR_143_PROTOCOL_CONFLICT IN_COMM_PORT:

ERR_144_REMOTE_POINT_EXCEEDED_FOR_COM1:
ERR_145_REMOTE_POINT_EXCEEDED_FOR_COM2:

ERR_146_REMOTE_POINT_EXCEEDED_FOR_COM3:

ERR_147_REMOTE_POINT_WRONG_NX_SLAVE_ADDRESS:

DESTINATION OPERAND FOR ANALOG SET VALUE
SCHEDULE

REMOTE POINTS, WRONG SYNTAX

REMOTE POINTS, WRONG ADRESS OR OBJECT
NUMBER

REMOTE POINTS, WRONG TYPE OR WRONG SYNTAX

REMOTE POINTS, PROTOCOL CONFLICT IN COMM
PORT

REMOTE POINTS, POINTS EXCEEDED FOR COM1
REMOTE POINTS, POINTS EXCEEDED FOR COM2
REMOTE POINTS, POINTS EXCEEDED FOR COM3

REMOTE POINTS, WRONG SLAVE NX ADDRESS
MUST BE 100..103

eZ HVAC and building automation Wizard

Page 76

M, Mircom

OpenBAS

Building Automation System

ERR_148_REMOTE_POINT_WRONG_WIRELESS_LINK_NR:

ERR_149_REMOTE_POINT_WRONG_POINT ADDRESS:

ERR_150_REMOTE_POINT_DC_4 1st_RSRVD_NX_SLVS:

ERR_151_KEYWORD_NOT_SUPPORTED_ON_THIS_VERSION:

ERR_152_WIRELESS_LINK_WRONG_SYNTAX:

ERR_153_WIRELESS_LINK_WRONG_INDEX:

ERR_154 WIRELESS_LINK_WRONG_GROUP:

ERR_155_WIRELESS_LINK_WRONG_ADDRESS:

ERR_156_PROTOCOL_NOT_SUPPORTED_ON_SELECTED_PORT:

ERR_157_ADDRESS_OUT_OF_RANGE_FOR_SEL_PROTOCOL :

ERR_158_WRONG_BAUD_RATE_SELECTED:

ERR_159_COMM_PORT_WRONG_SYNTAX:

ERR_160_COMM_PORT_SET_AS_SLAVE_NEEDS_ADDRESS:

ERR_161_N2_OPEN_WRONG_SETUP:
ERR_162_COMM_PORT_DEFINED_MORE_THAN_ONCE:

ERR_163_MODBUS_SLAVE_WRONG_ADDRESS :

ERR_164 BACNET_WRONG_ADDRESS:

ERR_165_WRONG_COMM_PORT_SELECTED:

REMOTE POINTS, WRONG WIRELESS LINK NUMBER
MUST BE 1..10

REMOTE POINTS, WRONG ADDRESS, , FOR NX
SLAVES 100..103 OTHER POINTS 1..99
or 104..253

REMOTE POINTS, DUAL CORE REMOTES 51..54
RESERVED FOR NX SLAVE DEVICES

THIS KEYWORD IS NOT YET SUPPORTED ON THIS
VERSION, WILL BE IMPLEMENTED IN A FUTURE
REVISION

WIRELESS LINK, WRONG SYNTAX

WIRELESS LINK, WRONG LINK INDEX,
MUST BE 1 to 10

WIRELESS LINK, WRONG GROUP NUMBER,
MUST BE 1 to 10

WIRELESS LINK, WRONG ADDRESS,
MUST BE 1 to 199

COMM PORT, PROTOCOL NOT SUPPORTED ON
SELECTED PORT

COMM PORT, ADDRESS OUT OF RANGE FOR
SELECTED PROTOCOL

COMM PORT, WRONG BAUD RATE SPECIFIED

COMM PORT, WRONG SYNTAX

COMM PORT, PORT SET AS SLAVE NEEDS AN
ADDRESS DEFINED

COMM PORT, N2-OPEN WRONG PARAMETERS SETUP
COMM PORT, DEFINED MORE THAN ONCE

COMM PORT, MODBUS RTU WRONG SLAVE ADDRESS
SELECTED

COMM PORT, BACNET MSTP WRONG SLAVE
ADDRESS SELECTED

COMM PORT, WRONG NUMBER SELECTED,
MUST BE 1, 2 OR 3

eZ HVAC and building automation Wizard

Page 77

M. Mircom: g e PENBAS

ERR_166_AI_CONFIG_WRONG_AI_SELECTED: AI CONFIGURATION, WRONG ANALOG INPUT
SELECTED

ERR_167_AI_CONFIG_WRONG_SYNTAX: AI CONFIGURATION, WRONG SYNTAX

ERR_168_AI_CONFIG_WRONG_TYPE: AI CONFIGURATION, WRONG TYPE SELECTED

ERR_169_AI_CONFIG_WRONG_CALIBRATION_VALUE: AI CONFIGURATION, WRONG CALIBRATION VALUE

ERR_170_TREND_DIGITAL_DATABASE_POINT_WRONG_SYX: TREND, DIGITAL DATABASE POINT WRONG
SYNTAX

eZ HVAC and building automation Wizard Page 78

Wiy, MGC

CANADA - Main Office US.A TECHNICAL SUPPORT
25 Interchange Way 4575 Witmer Industrial Estates North America L .
Vaughan, ON L4K 5W3 Niagara Falls, NY 14305 Tel: (888) Mircom5 Printed in Canada

© MGC 2017

Tel: (888) 660-4655 Tel: (888) 660-4655 (888) 647-2665 Subjsctitcchangelwiticutiprodnetice

(905) 660-4655 (905) 660-4655 International WWW.mircomgroup.com
Fax: (905) 660-4113 Fax: (905) 660-4113 Tel: (905) 647-2665

	Blank Page

