

System Design Studio User Guide
LT-6675 Rev. 8
Jan 2024

1

Revision history

Date Revision Description

February 2020 Rev. 0 Initial Release with System Design Studio 1.0.1

April 2020 Rev. 1 Fixed bookmarks and minor updates for SDS 1.0.2

August 2020 Rev. 2 Project tree support and OpenBAS-NWK-ETH3 configuration support for
SDS 1.1.0

March 2021 Rev. 3 Emulator, built in user guide, thermistor, BACnet tunneling and multi-
language support for SDS 1.2.0

June 2021 Rev. 4 Analog Output configuration bug fixes, Configure from script support for
emulator; SDS 1.2.1

December 2022 Rev. 5 Live values in ladder editor, offline ladder editor, standalone OpenBAS-
NWK-ETH3 support, fieldbus statistics window; SDS 1.3.0

June 2023 Rev. 6 Input Overrides, call across PLC’s, Lagger calculator option in Leader Calc.
instruction, check for updates; SDS 1.3.1

Nov 2023 Rev. 7 Fix inability to connect to slaves through BACnet/MSTP fieldbus; last
release supporting 32 bit systems; SDS 1.3.2

Jan 2024 Rev. 8 Support for “Persistent point name groups”, fix incorrect output from
Proportional Control instruction when using RF as output; SDS 1.3.3

About this guide

This guide covers the System Design Studio version 1.3.3 with recommended firmware versions of

3.16.3 and greater. Note: a firmware version of 3.15.5 or greater is required on “NX core” controllers

and a firmware version of 3.15.5 or greater is required on OpenBAS-NWK-ETH3 controllers. See LT-6630

– Driver Installation and Firmware Upgrade Procedures.pdf for help with upgrading a controller’s

firmware.

Overview

The Mircom System Design Studio is a powerful configuration tool for OpenBAS systems. The System

Design Studio can configure every aspect of an OpenBAS system including communication settings, PLC

logic, schedules, trends and more. In addition to system configuration, users can easily test their logic

with personalized views and filters. Although the System Design Studio can be used for basic system

monitoring, Mircom also offers the System Management Studio (Powered by Niagara Framework) which

is intended for system monitoring, analytics, advanced trending, alarming, master scheduling and

dashboard design.

Firmware compatibility guide

SYSTEM DESIGN

STUDIO

SUPPORTED CONTROLLERS FIRMWARE VERSION

MINIMUM

FIRMWARE VERSION

SUPPORTED

1.3.3 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN, OpenBAS-NWK-

3.15.5+ 3.16.3+

2

ETH3

1.3.2 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN, OpenBAS-NWK-

ETH3

3.15.5+ 3.16.1+

1.3.1 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN, OpenBAS-NWK-

ETH3

3.15.5+ 3.15.5+

1.3.0 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN, OpenBAS-NWK-

ETH3

3.15.1+ 3.15.1+

1.2.1

All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN

3.04.0+ 3.09.4+

OpenBAS-NWK-ETH3 3.06.0+ 3.09.4+

1.2.0 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN

3.04.0+ 3.09.0+

OpenBAS-NWK-ETH3 3.06.0+ 3.09.0+

1.1.0 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN

3.04.0+ 3.04.0+

OpenBAS-NWK-ETH3 3.06.0+ 3.06.0+

1.0.2 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN

3.04.0+ 3.04.0+

1.0.1 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN

3.04.0+ 3.04.0+

1.0.0 All “NX” controllers (OpenBAS-xx-NXxxxx),

OpenBAS-HV-LEARN

3.0.0+ 3.0.0+

Specifications

• Supported OS

o Windows 10

• Supported architecture

o 64-bit

• Supported controllers

o All NX core-based controllers (OpenBAS-XX-NXXXX, OpenBAS-HV-LEARN), OpenBAS-

NWK-ETH3

3

Table of Contents
User interface overview .. 6

Selecting a language ... 8

Connecting to and running the NX emulator .. 8

Connecting to controllers ... 9

Configuring network settings and IP address ... 13

Upgrading firmware .. 14

Discovering OpenBAS gateways.. 15

Creating projects ... 16

Removing projects and controllers ... 17

Naming projects and controllers... 17

Importing projects .. 17

Importing and exporting IP connection lists ... 18

Software resetting controllers .. 18

Power up initializations ... 18

Performing a factory reset .. 19

Memory overview ... 19

Dynamic memory .. 21

Viewing and synchronizing a controller’s real time clock ... 22

Date and time settings .. 23

Creating schedules .. 23

Configuring and calibrating inputs .. 24

Configuring and calibrating outputs ... 27

Output priorities ... 29

Naming points ... 30

Limiting point values ... 31

Configuring fieldbus and communication settings ... 31

Configuring OpenBAS-NWK-ETH3 communication settings through USB flash memory 37

Configuring email alerts .. 38

Debugging and testing logic .. 38

Adding expandable memory accessories .. 39

4

LCD display and alarm configuration .. 39

Dual core display settings ... 42

Viewing, Setting and understanding the internal point database .. 43

Viewing trends .. 48

Configuring trends .. 48

Configuring remote points .. 48

Connecting wireless devices ... 51

Backup to disk ... 52

Restore from disk .. 52

SMS alerts ... 53

Configure from script (EZ-Script) .. 53

File transfer ... 55

Logic and the PLC .. 56

Logic instruction overview .. 58

Ladder (boolean) type instructions ... 58

And instruction.. 58

Nand instruction (inverted And) ... 59

Or instruction .. 59

Remote online (Or instruction) ... 59

Nor instruction (inverted Or) .. 59

Xor instruction (Exclusive Or) .. 60

Nxor instruction (Also known as Xnor, inverted Exclusive Or) ... 60

Invert instruction (Also known as Not) ... 60

And/Or instruction (A∙B+C∙D) .. 60

Or/And/Inv instruction (And/Or inverted) .. 61

Math type instructions .. 61

Min instruction (minimum) ... 61

Max instruction (maximum) ... 61

Avg instruction (average) .. 62

“+” instruction (addition) .. 62

“-“ instruction (subtraction) .. 62

5

“*” instruction (multiplication) ... 62

“/” instruction (division) ... 63

Cmp (comparison) type instructions ... 63

“>” instruction (greater than) ... 63

“<” instruction (less than) ... 63

“=” instruction (equal) .. 64

“>=” instruction (greater than or equal to) ... 64

“<=” instruction (less than or equal to) .. 64

“!=” instruction (not equal to) .. 64

Other instructions ... 65

Label instruction ... 65

Long label instruction .. 65

Timer instruction ... 65

Jump instruction ... 67

Call instruction (subroutine call) ... 68

End instruction .. 68

LightG instruction (lighting group) .. 69

Assign instruction (controlling outputs) ... 69

Multiple Assign instruction ... 70

Totalizer instruction (pulse accumulator and energy metering) .. 70

PropCtrl instruction (proportional control) .. 73

AHU/RTU instruction (air handling unit or roof top unit) ... 74

HourCnt instruction (hour counter) .. 76

Alt/Pll instruction (alternate and parallel) .. 76

In Range instruction (and hysteresis/deadband) .. 79

Start/Stop instruction ... 80

Limit instruction .. 80

PID instruction (proportional, integral, derivative controller) .. 81

PropStager instruction (proportional stager) ... 84

LeaderCal instruction (leader and lagger calculator) .. 86

Staggered Start/Stop instruction .. 87

6

Special instructions ... 89

Random number special instruction ... 89

Modulus special instruction (division remainder) .. 90

Square root special instruction ... 90

Superheat special instruction (for R22 refrigerant) .. 91

User interface overview
The user interface can be divided into four main sections including the side panel, main tabs, sub-tabs

and user guide. The side panel is where connections to controllers are made and maintained. The main

tabs include Configuration for all controller configuration, Values and trends for viewing or modifying all

points and trends, and Logic for setting up all control logic. The user guide is hidden off to the right.

• Both the side panel and user guide have 3 visibility modes which are collapsed-locked,

expanded-locked and hover mode. Hover mode will overlay the side panel or user guide on top

of the screen when “hovering” the mouse cursor over the left, or right side of the screen

respectively.

• The user guide’s mode can be cycled through at any time using the shortcut Ctrl + H (“H” for

“help”).

User interface and Configuration main tab

7

Values and trends main tab

Logic main tab

8

User guide

Selecting a language
The System Design Studio supports English, Spanish, German, French, Italian, Dutch Nederlands, Hindi

and Punjabi. The language can be changed by clicking the Help menu at the top left and clicking Select

language. Alternatively, the shortcut Ctrl + L can be used to quickly access the language menu.

Connecting to and running the NX emulator
The NX emulator is a small Java-based program that acts like an OpenBAS-HV-NX10D controller. The

emulator is great for learning and training purposes since it allows users to configure logic and schedules

without any hardware. To run and connect to the emulator, after clicking the “+” icon in the top left-

hand corner, select NX-Emulator from the Device type: dropdown and click Add. The OpenBAS emulator

will open as a separate program and a controller with the name “NX-emulator” will be added to the

System Design Studio’s side panel.

• Not all settings and features that are available when connected to an OpenBAS-HV-NX10D are

available when using the NX emulator.

• Most interaction will be through the System Design Studio however every point can be Set from

the separate NX emulator program.

• All configurations will be lost when the NX emulator program is closed however the current

state of the NX-emulator can be saved to and restored from disk using the Disk button found at

the top of the NX-emulator program.

9

Connecting to controllers
The System Design Studio can connect and communicate with controllers in many ways. To understand

the different methods of connecting to a controller, a few terms and concepts need to be reviewed.

OpenBAS controllers are commonly configured to communicate with each other using the Optomux,

Modbus or BACnet protocols over an RS485 fieldbus. The Optomux protocol (like many others) uses a

master slave communication model where one controller is identified as the master controller, and all

other controllers connected to the fieldbus are identified as slave controllers. The master controller

initiates all communication, and the slave controllers respond to requests from the master controller.

Many connection methods involve using the master controller to relay messages to one of its slave

controllers, as well as relay the slave controller’s responses back to the System Design Studio.

• General requirements

o Connecting through a master to a slave (IP connection method 2, USB connection

method 2) requires the slave to be ‘online’ with at least one remote point configured on

the master controller pointing to the address of the respective slave.

• IP connection method 1 does not require any remote points to be configured.

o Connecting through a master and through one of its slave controllers to a “slave-of-

slave” controller (IP connection method 3,5, and USB connection method 3) requires:

• the “slave-of-slave” controller to be ‘online’ with at least one remote point

configured on the main master controller pointing to its address.

• the “slave-of-slave” controller to be ‘online’ with at least one remote point

configured on the “middle” controller pointing to its address.

• COM1/2 bridging on the “middle” controller must be set up for the address of

the “slave-of-slave” (see Configuring fieldbus and communication settings).

• The main master controller’s COM2 needs to be connected to the “middle”

controller’s COM1 and the middle controllers COM2 needs to be connected to

any COM port on the “slave-of-slave” controller.

• Connecting to controllers over IP:

o Requirements:

1. PC must be on same network as controller.

1. Port forwarding and dynamic DNS domains are supported.

2. The IP address of the respective OpenBAS-NWK-ETH3 is needed.

1. See LT-6630 for help determining the OpenBAS-NWK-ETH3’s IP address.

3. Connecting through an OpenBAS-NWK-ETH3’s SPI port to an NX10 series

controller, OpenBAS-HV-LEARN, or slaves to any of these controllers requires

that the SPI port is enabled on the OpenBAS-NWK-ETH3 (disabled by default).

To enable, follow the steps below to connect directly to an OpenBAS-NWK-

ETH3, right click the connection in the side panel and then click “Enable SPI”. If

“Disable SPI” is displayed, then the SPI port is already enabled.

10

o 6 IP connection methods

1. IP connection method 1: Connect to an OpenBAS-HV-NX10 series controller (or

an OpenBAS-HV-LEARN training module) that is connected to the OpenBAS-

NWK-ETH3’s SPI port.

1. Click the “+” icon in the top left-hand corner, fill in the IP address and

click “Add”. The IP address should be in the form of

“123.123.123.123:1234” or “www.sampleIP.com:8080”

2. IP connection method 2: Connect to a slave controller on COM2 of an

OpenBAS-HV-NX10 series controller (or OpenBAS-HV-LEARN training module)

that is connected to the OpenBAS-NWK-ETH3’s SPI port.

1. First connect to the master controller following the steps for connection

method 1.

2. Right click the master controller item in the side panel and click “Add

slave”.

3. Select SPI from the channel drop down box.

4. Type in the address of the slave controllers’ respective COM port and

click “Ok”.

3. 1 IP connection method 3: Connect to a slave on COM2 of a slave on COM2 of

an OpenBAS-HV-NX10 series controller (or OpenBAS-HV-LEARN training module)

that is connected to the OpenBAS-NWK-ETH3’s SPI port (commonly referenced

as a “slave-of-slave” connection).

1. First connect to the master controller following the steps for IP

connection method 1.

11

2. Right click the master controller item in the side panel and click “Add

slave”.

3. Select SPI from the channel drop down box.

4. Type in the address of the “slave-of-slave” controllers respective COM

port and click “Ok”.

4. IP connection method 4: Connect to a slave controller that is connected to an

OpenBAS-NWK-ETH3’s COM1 or COM2 ports.

1. First connect to the master controller following the steps for IP

connection method 1.

2. Right click the master controller item in the side panel and click “Add

slave”.

3. Select COM1 or COM2 appropriately from the channel drop down box.

4. Type in the address of the slave controllers’ respective COM port and

click “Ok”.

5. 1 IP connection method 5: Connect to a slave on COM2 of a slave controller that

is connected to an OpenBAS-NWK-ETH3’s COM1 or COM2 ports (commonly

referenced as a “slave-of-slave” connection).

1. First connect to the master controller following the steps for IP

connection method 1.

2. Right click the master controller item in the side panel and click “Add

slave”.

3. Select COM1 or COM2 appropriately from the channel drop down box.

4. Type in the address of the “slave-of-slave” controllers respective COM

port and click “Ok”.

6. IP connection method 6: Connect directly to an OpenBAS-NWK-ETH3.

1. Click the “+” icon in the top left-hand corner, fill in the IP address, select

ETH3 for the Device type and click “Add”. The IP address should be in

the form of “123.123.123.123:1234” or “www.sampleIP.com:8080”

• Connecting to controllers over USB

o Requirements

1. USB connections require a Type A Male to Type B Male USB cable except for the

OpenBAS-HV-LEARN controller which requires a Type A Male to Type Micro B

USB cable.

12

o 3 USB connection methods

1. USB connection method 1: Connect directly using a controllers USB port.

1. Connect a USB cable between the PC and target controller.

2. Click the refresh icon2.

2. USB connection method 2: Connect through a master controller to one of its

COM2 slave controllers.

1. Connect a USB cable between the PC and the master controller.

2. Click the refresh icon2.

3. Right click the master controller item in the side panel and click “Add

slave”.

4. Verify COM2 is selected from the channel drop down box.

5. Type in the address of the slave controllers’ respective COM port and

click “Ok”.

13

3. 1 USB connection method 3: Connect to a slave on COM2 of a slave on COM2 of

a master controller with the USB cable connected (commonly referenced as a

“slave-of-slave” connection).

1. Connect a USB cable between the PC and the master controller.

2. Click the refresh icon2.

3. Right click the master controller item in the side panel and click “Add

slave”.

4. Verify COM2 is selected from the channel drop down box.

5. Type in the address of the “slave-of-slave” controllers respective COM

port and click “Ok”.

1 “Slave-of-slave” connections require a minimum baud rate of 38400 on both involved

fieldbuses.

2Occasionally, switching a USB cable between controllers too quickly can cause problems in

Windows and the USB cable will need to be momentarily disconnected from the PC and

reconnected to establish a connection. Alternatively, the COM port can be disabled and re-

enabled within Windows Device Manager.

Configuring network settings and IP address
There are two ways to configure the network settings of an OpenBAS-NWK-ETH3.

1. If the current IP address is known, browse to http://[IP address]/protect/config.htm and change

the network settings as needed.

a. Warning: Changing the network settings incorrectly can cause the OpenBAS-NWK-ETH3

to become unreachable requiring physical access to the controller. It is recommended to

only change network settings while physical access to the controller is available.

b. In order to access the web pages, you will need to log in. The default username and

password are: Username: admin Password: mircom.

c. The default IP address is 192.168.1.51. Please see LT-6630 for details on the various

methods of determining the IP address or continue below for the USB flash memory

method.

2. Alternatively, the network settings can be viewed and modified using a USB flash memory stick:

a. First insert a cleared, FAT32 formatted USB flash memory stick into the OpenBAS-NWK-

ETH3 for 10 seconds.

b. After 10 seconds, remove the USB flash memory stick from the OpenBAS-NWK-ETH3

and reinsert into your PC.

c. Use any text editor to open the ROOT/_OPENBAS/IPCONFIG.INI file.

14

d. After making changes to IPCONFIG.INI, be sure to change “[N] = APPLY_CHANGES” to

“[Y] = APPLY_CHANGES” and click save.

e. Reinsert the USB flash memory stick into the OpenBAS-NWK-ETH3 and wait for it to

automatically reset.

Upgrading firmware
The firmware can easily be field-upgraded on all “NX core” controllers, the OpenBAS-NWK-ETH3 and the

OpenBAS-HV-LEARN. The general process for all controllers involves using 1 of 3 Windows based

“bootloader” programs, putting the controller into “bootloader mode” (using the Download and Reset

buttons), and connecting a USB cable between the controller and Windows PC. For more information,

see LT-6630 – Driver Installation and Firmware Upgrade Procedures.

1. Connect A USB cable between the controller and the PC.

a. USB type B for OpenBAS-NWK-ETH3 and “NX core” controllers (except OpenBAS-HV-

LEARN).

b. Mini USB for OpenBAS-HV-NX10D’s display board.

c. Micro USB for OpenBAS-HV-LEARN.

2. Run the appropriate* bootloader program from C:\OpenBAS_NX5 version X.XX.X\Bootloader\.

a. Bootloader 8-bits/HIDBootloader.exe for “NX core” controllers and OpenBAS-HV-

LEARN.

b. Bootloader 32-bits/PIC32UBL.exe for OpenBAS-NWK-ETH3 and OpenBAS-HV-NX10D’s

display board.

c. *There is a link to the appropriate bootloader program at the bottom of the

Configuration->Information sub tab however this tab will need to be opened before

putting the controller into bootloader mode.

3. Put the controller into “Bootloader mode”.

a. Press and hold the Download/DWNLD button.

b. While holding Download, press and release the RESET button.

4. Depending on the Bootloader program used the next steps are slightly different.

a. In HIDBootloader.exe:

i. If all steps were followed properly, text will appear saying that a device was

detected.

ii. Click Open Hex file and browse to and select the latest firmware being sure to

select the appropriate firmware for the controller.

iii. Check the box to “Allow Configuration Word Programming”.

iv. Click Program/Verify and wait for a confirmation that the process is complete.

v. Click Reset Device.

b. In PIC32UBL.exe:

i. Check the box to Enable USB connections (leave VID and PID to defaults).

ii. Click Connect.

15

iii. If all steps were followed properly, text will appear saying that a Device was

connected.

iv. Click Load Hex file and browse to and select the latest firmware being sure to

select the appropriate firmware for the controller.

1. The latest firmwares can be found after installing the System Design

Studio in the C:\OpenBAS_NX5 version

X.XX.X\Bootloader_HEXfiles\OpenBAS\ directory.

v. Click Erase-Program-Verify and wait for confirmation that the process

completed successfully.

vi. Click Run Application.

Discovering OpenBAS gateways
OpenBAS gateways such as the OpenBAS-NWK-ETH3 can be discovered if they are on the same local

network as the PC. After clicking the “+” icon in the top left-hand corner of the side panel, select the

PC’s IP address from the Interface dropdown (as seen from the OpenBAS gateway) and click Discover.

Any OpenBAS gateways that are discovered will show their name and IP address within the IP address

dropdown.

• Discovery uses BACnet/IP which requires a BBMD to work across subnets.

• Once discovered, the IP address can be used to make a one-off connection to the OpenBAS-

NWK-ETH3 or SPI-NX controller (if available), import projects or create projects.

16

Creating projects
Projects are folders within the side-panel that organize many controllers according to how they are

connected. After clicking the “+” icon in the top left-hand corner and entering an OpenBAS-NWK-ETH3’s

IP address, select Create project from the Action dropdown, enter a name for your project and click Add.

The System Design Studio will create a project folder (identified by a building icon) and automatically

add OpenBAS-NWK-ETH3 (IP connection method 6) and SPI-NX (IP connection method 1) controller

items to the project.

• An orange building icon indicates the project (controller list) has not been saved to an

OpenBAS-NWK-ETH3 (Requires USB flash memory stick).

o The USB flash memory stick should be cleared to start and formatted as FAT32.

o To save a project to the main ETH3’s USB flash memory stick, right click the project and

select Save project to Main ETH3.

o The Backup project to disk and Restore project from disk options available when right

clicking a project allow the project (controller list) to be saved to and restored from a

PC. This is useful when no USB flash memory stick is connected to an OpenBAS-NWK-

ETH3.

17

• The first OpenBAS-NWK-ETH3 added to a project is marked with an “(M)” for main, indicating it

should have a USB flash memory stick connected where the project (controller list) can be

stored.

o The main ETH3 can be changed when adding a new OpenBAS-NWK-ETH3 to a project or

by right clicking an existing OpenBAS-NWK-ETH3 item in the project and selecting Edit

ETH3.

• Controller icons (both IP and cloud) will turn green when the controller is responding and

will turn orange when the controller is not responding.

o At any time, you can right click a controller item within a project and select Update

status to force check if the controller is responding.

• Multiple OpenBAS-NWK-ETH3’s can be added by right clicking a project folder and selecting Add

ETH3.

• Slave* and “Slave of slave” controllers can be added by right clicking on their respective master

controllers within the project and selecting Add slave or Add slave of slave accordingly.

o *OpenBAS-NWK-ETH3 COM1 and COM2 slaves can be added by right clicking the COM1

and COM2 folders within the appropriate OpenBAS-NWK-ETH3 controller and selecting

Add slave.

Removing projects and controllers
Right click a project or controller item in the side panel and click “Remove”.

• Projects and IP connections will just no longer appear in the side panel.

• USB connections will release or close the COM port in Windows in addition to no longer

appearing in the side panel.

Naming projects and controllers
Right click a project or controller item from the side panel, click “Rename”, enter the desired name and

press Enter.

• Controller names are limited to 18 characters.

• The controller’s name is stored in the 200th index/ID of the Point names list within the

controller’s memory. However, the controller’s name is hidden from the Values and trends-

>Names table. Knowing this allows the controller’s name to be displayed on the LCD display (See

LCD display, alarms and configuration).

Importing projects
Projects can be imported from an OpenBAS-NWK-ETH3 with a USB flash memory connected, or projects

can be imported from disk, provided a project has previously been saved or backed up to disk. Currently

saving to, or importing from an OpenBAS-NWK-ETH3 requires authentication. The default username and

password are: Username: admin Password: mircom. The username and password can be changed from

the OpenBAS-NWK-ETH3’s web pages using any web browser.

18

• When importing from disk, by default the IP address used will be taken from the project file,

however an alternative IP address can be entered. This can be especially useful when

connecting through a DDNS address or through a port forwarded IP address.

Importing and exporting IP connection lists
Deprecated as of 1.1.0 due to project support

After connecting to multiple controllers using any of the IP connection methods, the up-arrow button

located at the top of the side panel can be used to save a *.json file to disk that allows for quick and easy

reconnection to the same set of controllers at a future time, or from another computer with the System

Design Studio installed.

• To export a list of the current IP based connections, click the up-arrow button, browse to an

appropriate directory, enter a descriptive file name and click Save followed by Ok. The file will

be created.

• To import a previously exported IP connection list, click the down-arrow button, browse to the

appropriate *.json IP connection list file, and click Open followed by Ok. The System Design

Studio will attempt to connect to all controllers, populating the side panel with each controller

that is responding.

• USB connections are not included in the exported file and any existing USB based connections

will remain in the side panel after importing an IP connection list file.

• Existing IP based connections will remain in the side panel after importing an IP connection list

file.

Software resetting controllers
Right click a controller item from the side panel and click “Restart”.

• All “NX core” controllers will essentially power cycle and re-initialize according to the settings in

the Configuration->Power up init tab. See Power up initializations for more information.

• Alternatively, pressing the RESET button will also power cycle and re-initialize according to the

settings in the Configuration->Power up init tab.

Power up initializations
The power up initializations let the user decide what the controller should do with its volatile memory

(memory that is lost without power) during each power cycle and can be found under Configuration-

>Power up init. Typically, these settings relate to whether the controller has a backup battery installed

to retain the volatile data during a power cycle or short-term power outage. If there is no battery

installed, then the present value of points such as RES_BIT or RES_FLT will automatically be Set to zero

after a power cycle (regardless of which options are checked).

• “Erase bit registers” will set the present value of all RES_BIT type points to 0 (zero) during the

power on process.

19

• “Erase float registers RES_FLT 1-40, binary input 1-40, analog input 1-40, analog output 1-10”

will set the respective points’ present value to 0 (zero) during the power on process.

• “Erase local overrides” will clear any local overrides (priority 1) to Binary outputs (Set using a

display) during the power on process.

• “Erase communication overrides to remote points of binary or analog outputs” will clear any

communication overrides (priority 5) to Binary or Analog outputs during the power on process.

Performing a factory reset
A factory reset will return the controller to the state it left the factory. The Factory reset window can be

found by right clicking any controller item from the side panel and selecting Factory reset. There are two

main sections in the Factory reset window, general and remote points. The general section allows for

individual sections of the controller’s memory to be factory reset, and the remote points section allows

for the various sets of remote points to be individually factory reset as well. For the general section’s

“General configuration” option to be enabled, the controller must be connected using IP or USB

communication method 1 to prevent a user from accidentally modifying the communication settings of

a remote controller and therefore causing it to stop responding.

• To perform a complete factory reset through software:

1. Select all remote points in the remote points section and click “Clear”.

2. Once the remote points have been cleared, in the general section, click the “All” button

followed by the “Clear and reset” button. The controller will now be returned to the

factory default state after initiating a software reset.

• To perform a partial factory reset through software:

1. First, if needed, factory reset any remote points in the remote point section by checking

the box next to the appropriate sections and clicking “Clear”.

2. Next select the appropriate sections in the general section followed by the “Clear and

reset” button. The controller will reset the respective sections to factory defaults after

initiating a software reset.

• To perform a hard reset for the OpenBAS-NWK-ETH3:

1. Press and release the Reset button, and after 1 second press and hold the Download

button. You will see the LEDs begin blinking rapidly, release the button after the LEDS

stop blinking rapidly.

Memory overview
There are a few different memory options with respect to OpenBAS hardware. All OpenBAS-XX-NXXXX

controllers (also referred to as “NX core” controllers) as well as the OpenBAS-HV-LEARN module support

the standard database however the OpenBAS-HV-NX10D, and any controller with a memory expansion

accessory installed, will have an expanded database. The OpenBAS-NWK-ETH3 database is different and

should be reviewed. The OpenBAS-NWK-ETH3 internal points can be read or written through BACnet/IP

or MODBUS/TCP.

• The standard “NX Core” database:

20

Feature Amount

Analog inputs (AI) 1..40

Binary inputs (BI) 1..40

Analog outputs (AO) 1..10

Binary outputs (BO) 1..40 + 41..60 (lighting group control points)

Internal bytes (ADB) 1..100

Internal integers (ADI) 1..100

Internal floats (ADF) 1..100

PLC1 400 instructions

PLC2 *see Dynamic memory 400 instructions *see Dynamic memory

PLC3 *see Dynamic memory 400 instructions *see Dynamic memory

Point names 199

Alarms 8

Event log 200

Trends *see Dynamic memory 0..16 *see Dynamic memory

Script/file storage *see Dynamic memory 0-16KB *see Dynamic memory

Result bits (RES_BIT) 1..255

Result floats (RES_FLT) 1..40

Remote points (RMT) 1..50

Timers (TMR) 1..16

• The standard “NX core” database with the OpenBAS-ACC-32KNV memory expansion (Changes

from NX core in green):

Feature Amount

Analog inputs (AI) 1..40

Binary inputs (BI) 1..40

Analog outputs (AO) 1..10

Binary outputs (BO) 1..40 + 41..60 (lighting group control points)

Internal bytes (ADB) 1..100

Internal integers (ADI) 1..100

Internal floats (ADF) 1..100

PLC1 400 instructions

PLC2 400 instructions

PLC3 400 instructions

Point names 199

Alarms 8

Event log 200

Trends 8..16 *see Dynamic memory

Script/file storage 16-24KB *see Dynamic memory

Result bits (RES_BIT) 1..255

Result floats (RES_FLT) 1..40 +51-255 *Note 41-50 are not available

Remote points (RMT) 1..50 +51-255

Timers (TMR) 1..16

21

• The OpenBAS-HV-NX10D database (changes from NX core in green):

Feature Amount

Analog inputs (AI) 1..40

Binary inputs (BI) 1..40

Analog outputs (AO) 1..10

Binary outputs (BO) 1..40 + 41..60 (lighting group control points)

Internal bytes (ADB) 1..100

Internal integers (ADI) 1..100

Internal floats (ADF) 1..100

PLC1 400 instructions

PLC2 400 instructions

PLC3 400 instructions

Point names 199

Alarms 8

Event log 200

Trends *see Dynamic memory 0..16 *see Dynamic memory

Script/file storage 16-112KB *see Dynamic memory

Result bits (RES_BIT) 1..255

Result floats (RES_FLT) 1..40 +41-255 *Note 41-50 may be available

Remote points (RMT) 1..50 +51-255

Timers (TMR) 1..16

• The OpenBAS-NWK-ETH3 database

Feature Amount

PLC1 400 instructions

PLC2 400 instructions

Point names 199

Internal bytes (ADB) 1..100

Internal integers (ADI) 1..100

Internal floats (ADF) 1..100

Result bits (RES_BIT) 1..255

Result floats (RES_FLT) 1..255

Remote points (RMT) 1..2000

Timers (TMR) 1..16

Dynamic memory
Dynamic memory allows the default Trend storage to be traded for extra script/file storage or PLC

instruction storage on “NX core” controllers. Dynamic memory can be configured in Configuration-

22

>Dynamic memory. It is recommended to only change these options directly after a full factory reset

since changing them will corrupt whatever data is currently in the respective memory storage areas.

• Base memory controllers (all OpenBAS-XX-NXXXX controllers + OpenBAS-HV-LEARN without

memory expansion accessories).

o Section one, or Trends 1-8 can be traded for +8KB of script/file storage.

o Section two, or Trends 9-12 can be traded for +4KB of script/file storage or PLC3.

o Section three, or Trends 13-16 can be traded for +4KB of script/file storage or PLC2.

• Controllers with the OpenBAS-ACC-32KNV memory expansion (includes 16 KB of script/file

storage by default).

o Section one, or Trends 1-8 cannot be traded.

o Section two, or Trends 9-12 can be traded for +4KB of script/file storage.

o Section three, or Trends 13-16 can be traded for +4KB of script/file storage.

• OpenBAS-HV-NX10D (includes 16 KB of script/file storage by default).

o Section one, or Trends 1-8 can be traded for +32KB of script/file storage.

o Section two, or Trends 9-12 can be traded for +32KB of script/file storage.

o Section three, or Trends 13-16 can be traded for +32KB of script/file storage.

• Note that Section three on the OpenBAS-HV-NXSMS is used for SMS text message storage and

cannot be traded.

Viewing and synchronizing a controller’s real time clock
In Configuration->Information “Time” and “Date” shows the current time and date of the real time

clock in the controller. A controller’s real time clock can be synchronized with your PC by right clicking

the controller in the side panel and clicking “Sync time with computer”. Additionally, upon adding a

controller, the System Design Studio will pop up asking the user to sync the controller’s time if it is off by

more than 5 minutes.

• Slave controllers will have their real time clock synchronized with their master controller

periodically if they have at least one point configured as a remote point on the master

controller.

• Controllers will backup the current time and date into non-volatile memory every 15

minutes meaning the controller time will only ever be off by a maximum of the time the

controller was without power (or battery backup) + 15 minutes.

• When OpenBAS controllers are configured on a BACnet network, the BACnet time

synchronization feature can be enabled on a master controller such as a JACE-8000 or

from the System Management Studio.

• Only the OpenBAS-HV-NX10 series controllers and the OpenBAS-LC-NX12R lighting

controller come with a rechargeable backup battery which will keep track of time even

when the controller loses power, for up to seven days. Every controller has a connector

to allow a battery to be installed.

1. Allow for 24 hours for the battery to fully recharge.

23

Date and time settings
In Configuration->Date and time, holidays, daylight savings, daily clock adjustment and time mapping

options are available.

• Holidays

o Up to 25 holidays can be configured for specific days of the year. Holidays are used

within Configuration->Schedules (see Creating schedules).

o To remove a holiday, hover over the schedule you want to delete and click the “x” icon

that appears to the right of the date.

• Daylight savings time

o Click the enable button to turn on daylight savings

o Use the “+1 start” date and time settings to adjust the date and time that the clock

should be adjusted forward 1 hour.

o Use the “-1 start” date and time settings to adjust the date and time that the clock

should be adjusted backwards 1 hour.

• Time mapping (NX controllers only)

o Time mapping allows various time related points to be mapped to result float (RES_FLT)

type points (RES_FLT_1-RES_FLT_245) that can then be used within the PLC. These

points are read only.

o Check the box next to any required time related data and then choose any available

RES_FLT channel.

o “All time data” will use a consecutive series of 6 RES_FLT points to store the current

minute, hour, day, month, year and weekday (0=Sunday to 6=Saturday).

o A RES_FLT channel of 255 will disable the respective time data point’s mapping.

• Daily clock adjustment (NX controllers only)

o Over time, the real time clock can drift and become inaccurate if it is not being synced

periodically. The daily clock adjustment slider can be set between -25 seconds and +25

seconds per day.

Creating schedules
In Configuration->Schedules, up to 400 schedules can be created (200 on OpenBAS-NWK-ETH3). Before

testing any schedules, it is important to make sure that the controller’s time is correct, and to think

about how the time will be synchronized (see Viewing and synchronizing a controller’s real time clock).

After clicking on the Schedules tab, the System design studio will begin reading all schedules in the

background.

• Only enabled or previously configured schedules will be shown.

• Click the “+” icon to create a new schedule.

• To delete a schedule, hover over and click the garbage can icon.

• Each schedule can be set to run on a single day of the year, certain days of the week, or on every

configured Holiday (see Date and time settings to configure Holidays).

24

• Each lighting group control point (whether using RES_BIT_1-20 or BO_41-60 for priority control)

can have up to 10 schedules. The System design studio will not let you create an 11th schedule

for any lighting group. RES_BIT_1 and BO_41, for example, can both be used separately

(requires two lighting group instructions, see LightG overview) although only 10 schedules can

be created in total to control either RES_BIT_1 or BO_41.

• Up to 200 schedules can be created to Set ADB, ADI, ADF, and RES_FLT type points as well as

RES_BIT_21-RES_BIT_255 and BO_1-BO-40.

• Schedules have the least priority, equivalent to BACnet priority 11. This means that points

previously Set by schedules can still be Set by PLC instructions or overrides.

• Any schedules for BO or RES_BIT type points can be configured to turn both on and off at

specified times using only 1 schedule.

o After selecting the BO or RES_BIT point type when creating a schedule, enter 1 into the

“Set value” text box and a drop-down menu will appear with options for Normal, Period,

or Period force.

▪ Normal will Set the points state to 1 at the specified time.

▪ Period will Set the points state to 1 at the specified Start time and 0 (zero) at the

specified End time.

▪ Period Force will Set the points state to 1 every minute until the End time where

it will be Set to 0 (zero).

Configuring and calibrating inputs
Most OpenBAS controllers have universal inputs which allow users to connect either an analog or binary

signal into them. To specify that a universal input is being used as either a binary or analog input, select

the appropriate Type within Configuration->Inputs outputs->Universal Input calibration. In addition, be

sure to correctly reference either the analog or binary point within the PLC, schedules etc. For example,

when there is a voltage of 3V DC on universal input 1, analog input 1’s (AI_1) present value (if Type set

as 0-10VDC input) will read 3 Volts but binary input 1’s (BI_1) present value will read 0 (zero). For more

information on wiring and connecting different types of inputs, see the installation manual (for any

OpenBAS controller with universal inputs).

• Universal inputs can be calibrated by going to Configuration->Inputs outputs and selecting the

Universal input calibration option from the main dropdown box.

• From this table, users can select input types, define units, and further calibrate an

analog input’s present value property with either an offset value or multiplier

(depending on the input type).

• When changing the offset or multiplier, the respective analog input’s present value

property will be updated at a faster rate to allow the user to better match the real time

value of a multimeter or other measuring device.

• For help wiring Universal inputs correctly, click the icon located beside the input’s

selected Type to see a common wiring diagram with proper dip switch settings.

25

• For noisy or unstable inputs, within the Configuration->Inputs outputs->General option and

under the Custom input averaging header, the universal inputs 1 through 8 can be averaged

over a multiple of 200ms for analog inputs, and a multiple of 50ms for binary inputs. In addition,

there is a “global AI averaging” calibration parameter located under the General IO

configuration header which affects all 40 analog inputs.

• By default, Custom input averaging is disabled, and the values are configured

automatically based on input Type.

• When analog inputs 1 through 8 have their individual input averaging calibration

parameters set to 0 (zero), they will use the global AI calibration parameter instead. This

requires checking the Enable custom input averaging checkbox and manually setting

each value.

• Any NTC thermistor can be used for temperature sensing applications since OpenBAS controllers

are not limited to a specific type or manufacturer and up to 3 different thermistors can be used

on each controller with high accuracy. To support the wide range of thermistors available, some

configuration is needed.

• For most 10K Type 3 thermistors, select the 10K Type 3 NTC Thermistor °C (or °F) option

from the Type dropdown within the Configuration->Inputs outputs->Universal input

calibration table. No other configurations are needed.

• For any NTC thermistors aside from 10K Type 3 NTC thermistors, a custom thermistor

Type needs to be selected and the A, B and C parameters need to be configured.

1. Select a Custom Thermistor Type within the Configuration->Inputs outputs-

>Universal input calibration table.

• When selecting a Custom Thermistor Type, “Ext. 12V” (externally

powered) or “Int.” (internally powered) refers to how the thermistor

will be wired.

• It is highly recommended to use the “Ext. 12V” wiring (click icon for

diagram) even if the controller does not provide a 12VDC source and it

means purchasing an external 12VDC power supply. 12VDC will provide

much higher resolution (smaller noticeable temperature increments)

compared to the internal 5V supply.

2. Configure the A, B and C parameters for Custom Thermistor A and/or Custom

Thermistor B within the Configuration->Inputs outputs->General option under

Custom thermistor configuration (Steinhart-Hart) header:

• Select from available presets or select Manual.

• To manually configure a thermistor, you will need to reference its

datasheet. If the Steinhart-Hart A, B and C parameters are given on the

datasheet, they can be entered directly otherwise they can be

calculated using the temperature/resistance chart or table.

26

• Three sets of temperature and resistance are needed and

should be chosen around 5%, 50% and 95% of your expected

temperature range.

1. For a temperature range of 0-100 degrees, enter the resistance at 5

degrees, 50 degrees and 95 degrees, respectively.

2. Click calculate to populate the values for the A, B and C parameters.

3. Click Save. Note that the temperature and resistance values used to

calculate the A, B and C parameters will not be saved.

3. For unstable, external 12VDC supplies, the temperature accuracy can be

improved by wiring the output of the 12VDC supply into one of UI_1-8, and

selecting that Analog input Channel from the Custom thermistor external 12V

reference dropdown within the Configuration->Inputs outputs->General option

under the General IO configuration header. This will allow the internal voltage

to temperature conversion to use the real time supply voltage instead of

assuming a constant 12.0V (default behaviour).

• Various other settings can be found within the Configuration->Inputs outputs->General option

under the General IO configuration header:

• The “Invert local binary input logic” option will change binary input 1 through 8 to use

“active-low” logic which is useful when all the universal inputs (which are being used as

binary inputs) have their internal pull up resistor enabled and are wired through

equipment status relays to ground. The internal pull up resistors can be enabled with

dipswitches or jumper pins (depending on the controller) and are referenced in the

OpenBAS controller installation manuals (under the section for connecting resistive

temperature sensors).

• “OpenBAS-HV-NXSF CT input noise level” will subtract a raw 12-bit number from the

AI_1 to AI_8 raw input values (that are configured as “Current Transformer (1000:1)”

type inputs) on the OpenBAS-HV-NXSF controller. This is useful for current metering

applications where the connected CTs have some noise due to large nearby electrical

currents. This setting can take a value between 0 (zero) and 50 otherwise it will be

disabled.

1. After installation, configure all AI’s that are connected to CTs as “12-bit ADC”

type inputs.

2. Find the maximum of their present values, while the measured circuits are off.

3. Enter this maximum value into the “OpenBAS-HV-NXSF CT input noise level”

textbox and click Save.

4. Configure respective Analog inputs back to “Current Transformer (1000:1)” type

inputs.

27

• The Local output state when offline as slave section will automatically Set local Binary

outputs and Analog outputs to user configured values after a user configured amount of

time has passed without the master communicating.

1. This requires the slave device to be configured as a Slave type remote point

(using addresses 100-103) in the master controller.

2. The slave must be connected through it’s COM1 or COM2 ports.

3. Not currently supported when configured as a BACnet slave on COM1.

• See “Naming points” for information on creating, editing and deleting point names for inputs.

• See LT-6706 Universal Inputs Wiring and Configuration Guide available on the website for more

information.

Configuring and calibrating outputs
OpenBAS controllers can have two different types of output points which are Binary outputs (BO_X) and

Analog outputs (AO_X). Both types of output points can be configured in Configuration->Inputs outputs

by selecting Analog output or Binary output from the main dropdown box.

• Analog output configuration

o Analog outputs are controlled with a 0-100 value representing an output voltage

between 0 and 10V respectively by default.

o The local Analog outputs AO_1 and AO_2 (AO_3 and AO_4 as well for the OpenBAS-HV-

NX4AO) can have their output voltage range changed to 0-5VDC, 2-10VDC or 1-5VDC

using the drop-down menu within the table.

▪ Remote or slave expansion Analog outputs must be configured by connecting to

the controller in which they physically exist.

▪ An Invert checkbox can be selected to invert the logic (Ex. From 0-5VDC to 5-

0VDC for a respective value of 0-100.

o Set each point’s applicable unit by double clicking the appropriate cell under the Unit

column. Select a unit category in the first dropdown box, followed by the appropriate

unit in the second dropdown box.

▪ Note that the selected unit is currently intended for reference only as the

Analog outputs are still controlled using a value between 0 and 100, regardless

of the unit selected.

▪ The Analog output units will be included when the point is discovered over

BACnet.

o When being used as a Slave Expansion device, the local Analog outputs can be

configured with a default present value in case they go offline, or the master controller

stops communicating. This default value, and the amount of time (without

communication from the master) before these present values should be used can be

configured under the “Local output state when offline as slave” header within

Configuration->Inputs outputs->General option.

28

o The Analog outputs can sometimes be used to drive 0-20mA or 4-20mA inputs but only

if:

▪ isolation is not needed

▪ the impedance is fixed (does not change during operation)

▪ the inputs impedance is close to or between 250 Ohm to 500 Ohms.

▪ Determine the input’s impedance by referencing the devices datasheet or

measure it directly with an Ohm meter.

▪ Set the Analog output’s voltage range (Hint: I = V/R):

• 0-10V mode for 500 Ohm impedance resulting in 0-20mA.

• 2-10V mode for 500 Ohm impedance resulting in 4-20mA.

• 0-5V mode for 250 Ohm impedance resulting in 0-20mA.

• 1-5V mode for 250 Ohm impedance resulting in 4-20mA.

• For lower impedances, option 1 is to add a resistor in series to match

either 250 Ohm or 500 Ohm options.

o Ex. For 200 Ohm impedance, wire a 50 Ohm resistor in series

with the input to get 250 Ohms, and select either the 0-5V or 1-

5V voltage ranges for the Analog output.

• For lower impedances, option2 is to select the closest voltage range

and then the Analog output should be scaled accordingly in the PLC.

o Ex. For 200 Ohm impedance, the 0-5V range would give 0-

25mA which is too much current. The scaling factor can be

calculated like: x = 20mA/25mA Therefore the analog output

should be scaled by x = 0.8.

• Binary output configuration

o Binary outputs 1 through 8 can be configured with a minimum on/off time or they can

be averaged over time to prevent the relays from wearing out.

▪ Selecting “Averaging” from the drop-down box within Configuration->Inputs

outputs->Binary output, allows each local binary output (i.e., BO_1-8 for

OpenBAS-HV-NX10 series) to be configured so that their present value is

averaged over a multiple of 200ms between 0 (zero) and 255 (between 0 (zero)

and 51 seconds). The binary output will not change until the averaged value is

exactly equal to 1 or 0 (zero).

29

▪ Selecting “Min ON/OFF” from the drop-down box within Configuration->Inputs

outputs->Binary output, allows each local binary output (i.e., BO_1-8 for

OpenBAS-HV-NX10 series) to be configured so that the state will be locked for a

set amount of time after each state change (from 1 to 0 (zero) or vice versa).

Like “Averaging”, this setting is configured using a multiple of 200ms between 0

(zero) and 255 (between 0 (zero) and 51 seconds). If some process tries to

change or set the state of a binary output within the min on/off time period, the

controller will update the Binary output’s state once the timer expires.

• If for example a Binary output was turned off, and then before the min

on/off timer expires, is set on and then back off again, the Binary output

will remain off once the timer expires.

o The “Ignore Overrides (priority 5) to BO_1-8” checkbox when selected will ignore any

communication Overrides received for BO_1-8 (over USB, SPI, COM1-3). It will also

release any existing Overrides (p5) on BO_1-8 once every minute.

o When being used as a Slave Expansion device, the Binary outputs can be configured with

a default present value or state in case the master controller stops communicating. This

default value, and the amount of time (without communication from the master) before

these values should be used can be configured in the “Local output state when offline as

slave” section in Configuration->Inputs outputs->General (select General from the main

drop-down box). If the respective Binary output’s check box is checked, the Binary

Output will turn on when communication is lost.

o “Minimum 200ms period for Binary outputs” within Configuration->Inputs outputs-

>General, is checked by default and ensures that no individual local relay (i.e., BO_1-8

on the OpenBAS-HV-NX10 series) will be toggled more than 5 times per second.

o “Invert OpenBAS-LC-NX12R latching relay outputs” within Configuration->Inputs

outputs->General, is checked by default to support the TC30T and WR61613K-84 (UL)

latching relays. Unchecking this box with either of these relays would cause the above

latching relays to be closed (conducting) when the Binary outputs have a present value

or state of 0 (zero) and vice versa.

o “Inter relay time” within Configuration->Inputs outputs->General, creates a delay

between turning on each binary output when restoring their states after a power

failure. This is intended for any controller aside from the OpenBAS-LC-NX12R since it

uses latching relays which maintain their state during a power failure. “Inter relay time”

is configured with a multiple of 50ms between 0 (zero) and 10 (between 0 (zero) and 0.5

seconds).

• See “Naming points” for information on creating, editing and deleting point names for outputs.

Output priorities
Binary outputs have four main priorities referred to from highest priority to lowest priority as Local

Override, Communication Override, Logic Set and Schedule Set. These priorities map to BACnet priorities

30

1, 5, 9 and 11 respectively. Analog outputs only have the Communication override and Logic Set level

overrides.

• Local overrides can be activated or released from a local display such as the OpenBAS-HV-

LCD which is used in the OpenBAS-HV-NX10L or through any BACnet client*.

• Communication overrides can be activated or released (Auto) from various locations within

the System Design Studio, or through any BACnet client*.

o All communication overrides can be released for BO_1-BO_59 by Setting BO_60

(BACnet Binary value 160) to 0 (zero), 1, or releasing it through BACnet/IP. This will

only release BACnet priority 5 when BACnet BO priorities are enabled.

• PLC Set level priorities are used internally by each controller’s PLC and can also be activated

for example by clicking the On or Off present value icon while viewing any BO in the System

Design Studio. They can also be activated through any BACnet client*.

• Schedule Set level priorities are used when any schedule Sets a point’s present value. They

can also be activated through any BACnet client*.

• *The “Enable BACnet BO priorities” setting needs to be enabled from the Configuration-

>Communication tab under the Others heading. This will enable BACnet priorities for Binary

outputs either when commanded through COM1 BACnet/MSTP or when commanded

through an OpenBAS-NWK-ETH3 using BACnet/IP.

Naming points
Up to 199 point names can be configured, modified, uploaded and deleted from within the Values and

trends->Names tab. The System Design Studio will only read the point names from the controller when

changes are detected. Point names are shown throughout the System Design Studio when available and

are included during BACnet discoveries. To add a point name, click the Insert button, enter a Name,

select an Object type and Channel, and then click Save. Continue adding any required point names and

then click the Upload button when finished.

• Any existing point names will be loaded after connecting to a controller.

• The “Refresh” button will ignore any existing changes in the Names table and load all existing

point names from the controller.

• Point names can be modified by double-clicking on their current name under the “Name”

column. Clicking outside of the text box or pressing enter will apply the change.

• When there are unsaved changes, the Names table will be highlighted.

• To save all changes to the controller, click “Upload”. This will replace all existing point names on

the controller with the point names currently in the table. When the point names have been

saved to the controller, the table’s highlighted background will return to default/white.

• The “Export” and “Import” buttons can be used to save multiple sets of 199 point names to your

PC which can be helpful for debugging bigger projects.

o After inserting your labels, click Export, enter a descriptive file name and browse to an

appropriate location to save your labels.

31

o Click “Import” and browse to a previously exported label file to replace all current labels

currently in the Names table.

o You do not need to export labels separately when using the “Backup to disk” feature

from within the right-click context menu of a controller item in the side panel. The point

names will be backed up when selecting the “Configuration” option of the “Backup to

disk” feature.

• The “Delete” button will only delete point names from the table and the “Upload” button must

be used to save any changes that have been made to the controller.

• The “Reindex” button will reorder the point names in order to make BACnet discoveries more

efficient. This “reindexing” is done automatically when configuring from script or clicking

upload.

• See “Debugging and testing logic” for more information on the “Pin/Unpin”, “Group” and

“Update group” buttons.

Limiting point values
On NX controllers, up to 16 ranges of points (ADB, ADI, ADF, RES_FLT and RMT) may have their present

value property limited to a minimum, maximum or both a minimum and maximum value. Point limits

can be configured in the Configuration->Point limits tab. Note that point limits only apply to Set

commands received by communication (i.e., through IP, USB, SPI, COM1, COM2, or COM3). Any Set

commands originating internally, either from the PLC (logic) or Schedules will ignore all point limits.

• Select a limit type of either MIN, MAX or MIN+MAX along with a point type, End channel, Start

Channel and, Minimum and Maximum values as applicable.

o Start and End channels are inclusive.

o Minimum and Maximum values are inclusive.

• Only base points are supported (RES_FLT_1-RES_FLT_40 and RMT_1-RMT_50).

• Limits only prevent a point from being Set with a present value outside of the configured

Minimum and/or Maximum values.

o Existing present values, regardless of whether they are within the applicable limits, will

remain unchanged until a point is Set with a new value that is within the configured

Minimum and/or Maximum values.

• Any point with conflicting limits will use the applicable limit with the lowest ID (closest to the

top of the limit table).

• Point limits will also be ignored when using the LCD or Dual core display to adjust them.

• The Limit PLC instruction can also be used to limit specific points.

Configuring fieldbus and communication settings
Every OpenBAS controller has at least one communication port which supports the RS-485 standard by

default. Communication port settings such as address, protocol, and baud rate can be configured in the

Configuration->Communication tab. Since some OpenBAS controllers have two or three COM ports, it is

important to note that individual addresses need to be configured for each communication port and not

32

just one per controller. In general, all standard practices for RS-485 buses (wire gauge/length, biasing,

EOL) and the protocols in use should be followed but there are some OpenBAS specific

recommendations:

• General

o Assume a poll rate of about 25 points per second. Although the poll rate can vary widely

depending on the protocol, baud rate, bus load, and many other factors, 25 points per

second is a good “rule-of-thumb”.

o It is good practice to limit the number of controllers on a fieldbus. Splitting large field

buses into smaller field buses decreases risk since less controllers will go offline should

any single controller or bus have an issue.

o Use one of the following baud rates depending on the protocol:

Protocol Baud Rate

Arduino Query 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200

Optomux 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200

N2-Open 9600

Modbus 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200

BACnet/MSTP 9600, 19200, 38400

o Isolation and surge protection is absolutely necessary when running RS485 between

buildings.

• Communication settings:

o Depending on the controller, any available com ports (COM1, COM2 or COM3) and

associated settings will appear with common fieldbus settings such as Address, Protocol,

Baud rate, Stop bits, and Parity. All these settings must match (aside from Address,

which must be unique, and the master controller must be configured with the

appropriate master protocol) for every controller on a fieldbus.

▪ Note that the address of a COM port that is configured with a Master type

protocol is ignored (Optomux/N2 master or MODBUS master).

o “Last point to poll” will cause the controller to reset its polling cycle after polling a

specific remote point. This setting applies to both RMT and RES_FLT type remote points.

▪ Ex. A last point to poll of 55 will disable RMT_56+ and RES_FLT_56+ (assuming

expanded remote points are available).

▪ Note: An expanded RMT or RES_FLT point enabled by the OpenBAS-ACC-32KNV

memory expansion with an address of zero and a type of NULL will disable all

higher remote point channels for RMT or RES_FLT remote points, respectively.

o “Comm status mapping” allows X number of consecutive RES_BITS to be used to

represent the online status of the first X number of unique slaves, that have at least one

point configured as a remote point within the Master’s COM2 fieldbus.

▪ “Start RES_BIT” will accept a number between 1 and 240.

▪ “Amount” will accept a number between 1 and 24.

33

▪ If the “Amount” + “Start RES_BIT” sum goes over 250, RES_BIT_250 will be the

last RES_BIT used, and the rest of the slave controllers will not have their online

status mapped.

▪ If the first 5 managed remote points in COM2 are configured with address 1 and

the 6th managed remote point in COM2 is configured with address 2, then the

online status of the slave device with address 2 will be mapped to the Start

RES_BIT + 1. For example, if the Start RES_BIT is set to 40, the status of the slave

device with address 2 is then mapped to RES_BIT_41.

o “High priority points” allows a range starting from RMT_1 up to RMT_10 to be given

higher priority in the polling cycle. This causes the selected range to be polled at least

once every 1-5 seconds depending on the “Period” selected.

▪ “Period” is set as a multiple of 200ms and will accept a number between 5 and

25 for a total time of between 1 and 5 seconds.

o “Fieldbus statistics” has a “View” button that opens a modal dialogue with various

statistics to help diagnose any issues on a fieldbus:

▪ The first section titled “Packet statistics” shows two horizontal bar graphs that

convey the percentage of packets that are Ok, Lost or have errors for COM1 and

COM2 respectively.

▪ The “Master scan time” section shows the previous, current, and maximum

times that it has taken the controller to poll all configured and enabled remote

points in either COM1 or COM2. Note that this feature cannot be used if both

COM1 and COM2 are configured with master type protocols.

▪ “Eeprom write counter” shows the total amount of writes to the controllers

internal eeprom. The NX controllers use Eeprom for the internal floats, internal

integers and internal bytes (ADF, ADI, ADB), so it is important to minimize

writes, ideally to less than once per 10 minutes. Note that while eeprom writes

could come from a fieldbus, they can also originate from the PLC (do not

attempt to create an Assign instruction copying the present value of an Analog

input into an ADF for example), so this counter should always be reviewed even

with single standalone controllers.

▪ COM1 polling and COM2 polling sections both show the Last polled point and

COM2 polling also has a Loop count where a loop is defined as every enabled

remote point getting polled at least once.

o Bridging (“COM1/COM2 bridge”) allows a range of addresses that exist on a controllers

COM2 bus to be accessible by a Master controller connected to this controller’s COM1

port. This is also required for IP connection 3/5 and USB connection 3. When configured

correctly, this controller will forward any messages within the address range requested

on COM1 onto COM2, wait for the response, and then forward the response back on

COM1.

▪ COM1 bus must be configured with Opto22 slave at minimum 19200 Baud.

▪ COM2 bus must be configured with Opto22 Master at minimum 19200 Baud.

34

▪ Due to the second “hop” this type of communication will necessarily be slower

than “single hop” communications.

o Bridging for COM2/3 (“COM2/COM3 bridge”, “COM2/COM3 alternate bridge”) is not

currently supported.

o Master of RMT51+ determines whether COM2 or COM3 will manage (poll for) RMT_51-

RMT_255 with some exceptions. Please see the OpenBAS Remote Point Truth Table for

more details.

▪ Within Configuration->Remote points, the current managing com port will be

listed beside each remote point.

▪ In general, there are 3 sections of remote points that can be “moved around”

between managing COM ports. They are RMT_1-50, RMT_51-255* and

RES_FLT_41-255*.

• *Expansion memory is needed for all remote points.

o “BBT address” or broadcast block transfer is an advanced feature that when set to 253,

will allow the present value of RES_FLT_31-40 to be sent to all slaves in a single

message, called a broadcast message. This feature is disabled at any value other than

253.

o “Remote point override block” will send a communication override (priority 5) to any

remote points used as the output of any “assign” instructions located in the first [X]

instructions of PLC1, 2 or 3 (where [X] is the value of the “Remote point override block”

setting). Any “assign” instructions located after the Xth instruction where a remote point

is used as the output will cause the controller to send a regular PLC Set command

(priority 9). A value of 255 will disable this feature and all remote points used as the

output of an “Assign” instruction will be sent communication overrides at priority 5.

▪ OpenBAS controllers configured with the Opto22 slave protocol, only accept

overrides to Analog and Binary outputs from a master controller so this feature

is only intended to be used when interfacing with N2-Open controllers.

o “Discovery” allows you to select the range of each point type that will be discoverable

over BACnet IP (requires OpenBAS-NWK-ETH3) and BACnet/MSTP.

▪ Ranges must start from 1.

▪ Ranges are automatically configured when configuring from script.

▪ For point names to be included during a discovery, the point names must be

reindexed. Point names will be reindexed automatically when configuring from

a script or go to Values and trends->Names and click the “Reindex” button to

manually reindex them.

o The “BACnet MSTP slave” protocol is only available on COM1 of any “NX core” controller

or OpenBAS-NWK-ETH3 gateway and has some additional settings that appear when

selected.

▪ The BACnet MAC address can be configured in the always visible Address

setting.

35

▪ “BACnet/MSTP_ID” is an identifier that must be unique among the entire

BACnet network.

• If BACnet/IP and BACnet/MSTP are both used, it is important to make

sure every device has a unique ID across both IP and MSTP networks.

• For “NX core” devices, the default BACnet/MSTP_ID is technically 65535

but this specific value will force the ID to be the same as the Address

setting (i.e., MAC). The useable range is therefore 0-65534.

• For the OpenBAS-NWK-ETH3, the default BACnet/MSTP_ID is technically

0 but this specific value will force the ID to be the BACnet/IP_ID + 1000.

The useable range is therefore 1-65535.

▪ “Max master” is a setting that should be configured on all devices within a

BACnet/MSTP bus. It tells the controller which addresses are expected on the

bus allowing significantly better communication efficiency and speed.

• Ideally, this should be set to the number of controllers on the bus.

Setting the Max master to a number slightly above the total number of

controllers on the bus will slow down communications slightly however

it will save time and labour if more devices ever need to be added in the

future since this setting should be configured on every device.

• At minimum, set the max master properly on the last two devices so

that if the last controller is offline, the second last controller will not

waste time polling every possible address looking for the next controller

to pass the token to, and the BACnet/MSTP bus will continue to

function efficiently.

▪ “NPDU” can be set to local when connecting to an NAE/NCE for improved

communications (legacy feature, “NX core” controllers only).

▪ “Periodically broadcast I-Am” and “Start as MSTP master” are both

experimental features that do not conform to the BACnet standard but have

been included to improve integrations with some third party BACnet

implementations (NX core controllers only).

▪ BACnet priorities are enabled for any “NX core” controller’s Binary outputs

when COM1 is configured for the BACnet MSTP slave protocol or the Enable

BACnet BO priorities checkbox is selected. This will enable all 16 BACnet

priorities for each Binary Output (through IP or MSTP) however the 16 priorities

are all mapped to the four OpenBAS priorities (BACnet priority level 1,5,9 and

11). Enabling BACnet BO priorities requires the controller to be restarted.

▪ “Time to offline (min)” is the time in minutes to wait without a BACnet/MSTP

write to the Result float selected with “RF to watch”, before Setting

RES_BIT_247 (the online as slave in COM1 reserved Result bit) to 0 (zero).

• If “RF to watch” is 256, then a write to any Result float will be

considered.

36

o “BACnet_IP/ID” and “BACnet ID mode” are available when connected to an OpenBAS-

NWK-ETH3. By default, the BACnet ID mode is set to “Use last part of IP address” which

means, for example, the BACnet_IP/ID will be 51 if the OpenBAS-NWK-ETH3’s local IP

address is 192.168.1.51. Setting the BACnet ID mode to Manual will make the

BACnet/IP_ID whatever is entered into the textbox in the range 0-65535 (default is

1000). This ID must be unique among the entire BACnet network.

▪ If BACnet/IP and BACnet/MSTP are both used, it is important to make sure

every device has a unique ID across both IP and MSTP networks.

o The “MODBUS master” and “MODBUS slave” protocols have additional settings that

appear when selected on an “NX core” controller. These settings can allow for some

basic priority-based control if needed.

▪ “Modbus master write coil function” will either use the “write single coil” or

“write multiple coils” Modbus function/message when writing to a coil (binary

input/binary output/result bit).

▪ “Modbus slave write single coil action” will treat received “write single coil”

functions/messages as either regular Set or Override messages.

▪ “Modbus slave write multiple coils action” will treat “write multiple coils”

functions/messages as either regular Set or Override messages.

o Fire gateway point mapping settings will appear when either FX-3500 printer gateway or

FleX-Net printer gateway protocols are selected.

▪ Object type determines whether to map 60 fire points into RES_FLT’s, or COM1

or COM2 Remote points.

▪ Start channel refers to the first of 60 consecutive internal points that will be

used for storing the data received from the Fire Panel.

▪ Note that only one COM port can be used as a fire printer port gateway at a

time. Use multiple OpenBAS-NWK-ETH3’s if more than one FACP (Fire Alarm

Control Panel) needs to be monitored.

▪ The point mappings starting from “Start channel”:

1. Total event count – Total number of events sent from FACP since last

OpenBAS-NWK-ETH3 power on.

2. Loop event count – Total number of events from loop devices since last

OpenBAS-NWK-ETH3 power on.

3. System event count – Total number of system events since last

OpenBAS-NWK-ETH3 power on.

4. Exception event count – Total number of events containing an error or

that could not be fully parsed.

5. Non data event count – Total number of events containing no

recognized data.

6. Active event count – Total number of events stored in points 11-60 (5

points per event, referenced from “Object type” and “Start channel”)

7. Free for future use

37

8. Free for future use

9. Free for future use

10. Free for future use

11. Most recent event: Time stamp (HH:MM) in FX-3500 or Node number

(1-63) in FleX-Net

12. Most recent event: Loop (1-3) in FX-3500 or CPU (0-7) in FleX-Net

13. Most recent event: Address (1-159,201-359) in FX-3500 or Zone (1-400)

in FleX-Net

14. Most recent event: Type (Sensor = 1, Module = 2, External = 3)

15. Most recent event: Event

o Loop events

▪ Alarm activated = 1

▪ Alarm restored = 2

▪ Trouble = 3

▪ Trouble restored = 4

▪ Missing device = 5

▪ Open circuit trouble = 6

▪ Other/Unknown = 255

o System events

▪ (101-199 reserved for FX-3500)

▪ (201-254 reserved for FleX-Net)

16. (16 through 20 would be the second most recent event, and so on…)

o The NSHF/NSGP and IQ plus 355 protocols are only available on COM2 of an OpenBAS-

HV-NX10D controller and supports integration with these specific weight scales.

o The Environmental Condition Monitor protocol is only available on COM2 of an

OpenBAS-HV-NX10D controller and supports integration with this specific monitoring

system.

Configuring OpenBAS-NWK-ETH3 communication settings through USB flash

memory
While all settings on the OpenBAS-NWK-ETH3 can be configured through the System Design Studio,

some settings can also be configured with just a USB flash memory stick preloaded with a text file. Two

of the files that are created when inserting a USB flash memory into a powered on OpenBAS-NWK-ETH3

are COMM1CFG.ini and COMM2CFG.ini. These files allow modification of protocol and baud rate for

both communication ports as well as the fire panel gateway protocol settings Object type and Start

channel. The files can be accessed by physically connecting the USB flash memory to any PC. Once the

required changes have been made in the text file, change the “[N]” in the second line to “[Y]”, save and

reinsert the USB flash memory into the OpenBAS-NWK-ETH3.

• Do not connect a USB flash memory at the same time as a USB Type B cable (used for firmware

upgrades). Remove one before inserting the other.

38

• Leave the USB flash memory connected for at least 15 seconds for the changes to take affect.

• Note that the controller will automatically change the [Y] back to [N] in the second line of the

respective text file.

Configuring email alerts
The OpenBAS-NWK-ETH3 can send email alerts however it doesn’t support TLS based email servers so a

proxy like STunnel may be needed. Up to ten separate emails can be preconfigured on the OpenBAS-

NWK-ETH3 which can be sent on a trigger. The email server settings, and individual emails can be

configured from the web pages by going to the Configure->email server configuration page.

• The server configuration page allows the SMTP server domain, port, username, password and a

from-email to be configured.

o When using STunnel, use port 25, and leave the username and password blank, the

username and password will be configured within the STunnel settings.

• Stunnel example configuration for Gmail

o Install STunnel on an appropriate device.

o Review the Stunnel documentation for configuration details. In general, set:

▪ Operating Mode to Client

▪ Listen IP to 0.0.0.0

▪ Listen port to 25

▪ Connect IP to smtp.gmail.com:587

▪ TLS Cipher to None

▪ Application Protocol to smtp, auth=Plain

▪ Username to [full email]

▪ Password to [application password from gmail can be generated after enabling

2 factor authentication]

▪ No certificates are needed.

• To configure an individual email alert on the OpenBAS-NWK-ETH3, click on the respective “e-

mail #x” button from the Configure->email server configuration page.

o Enter a point to be used as the trigger. Any single point from the following range can be

used:

▪ ADB-1..100, ADI-1..100, ADF-1..100, RB-1..255, RF-1..255, RMT-1..2000, FIRE-

1..2

o The To:, CC:, and BCC: fields can have multiple emails separated by semicolons with a

max character limit of 49 characters total in each field.

o The Subject field has a character limit of 49 characters.

o The Message Body field has a character limit of 189 characters.

Debugging and testing logic
The Values and trends->Names tab doubles as a powerful debugging tool by allowing any set of points

to be grouped together in order to monitor and Set or Override their present values as needed.

39

• Use the instant search box to find points related to the logic you are testing.

o When filtering by object type, be sure to use the short forms as you see them. Ex.: Type

“BO” to find binary output points, not “binary” or “digital”.

• Use the Pin/Unpin button to hold points of interest at the top of the table.

o Note that the pinning feature is decoupled from the group feature described below.

o If no changes have been made to the current selection of points, currently pinned points

will be unpinned.

o If changes have been made to the current selection of points, currently pinned points

that have been deselected will be unpinned and any new selections will be added or

pinned to the top, along with the existing pinned points.

• Group X and Update group

o Note that the grouping feature is decoupled from the pinning feature described above.

o Note that point names in Groups are based on (remembered by) the Object type and

Channel number, not the Name text.

o By default, the Names table will load with Group 1 points selected (checked, but not

pinned).

o Changing the current Group will update the currently selected point names. Be sure to

select the group you want to work on before beginning to select or make changes to

your selection.

o Use the Update group button to save the currently selected point names into the

currently selected group (as identified by the “Group [x]” drop down to the left of the

Update group button).

o Groups will persist based on the controller’s Serial number, even after closing the

System Design Studio.

• Use the buttons in the Override column to command input or output points at priority 5.

Adding expandable memory accessories

When adding or removing accessories such as the OpenBAS-ACC-32KNV or converting an NX10 series

controller into an OpenBAS-HV-NX10D by adding the OpenBAS-HV-CORE2 “dual core display”, it is

important to perform a factory reset after following the proper connection procedure.

Note: Currently the OpenBAS-NWK-ETH3 does not support any of the I2C accessories

1. Backup the controller to disk using the Backup to disk option.

2. Disconnect all power to the controller being upgraded.

3. Physically connect the accessory to the controller.

4. Power up, connect to the controller in the System Design Studio, and perform a full factory

reset.

5. Restore the previously created backup to the controller using the Restore from disk option.

LCD display and alarm configuration
The LCD display (OpenBAS-HV-LCD) comes with the OpenBAS-HV-NX10L by default and can be

purchased as an add-on accessory for any NX core-based controller (however it will only mount directly

40

onto the OpenBAS-HV-NX10P controller). Up to 8 Alarms, or LCD display messages can be configured in

Configuration->LCD display.

• Select and enter a RES_BIT Channel number that will be used by the controller to determine

whether the associated alarm message should be shown on the LCD display. For example,

selecting RES_BIT_40 and entering “My first alarm” as the Alarm message will cause the LCD

display to show the Alarm Message “My first alarm” while RES_BIT_40’s state is True (1).

• If there are multiple active alarms (i.e., RES_BIT_X == 1), the Alarm message of the Alarm with

the lowest (closest to the top) ID will be shown on the LCD display.

• Alarm messages are limited to 16 characters.

• “Connection port” is currently limited to the default I2C, or None. Selecting None will disable the

communication between the controller and the LCD display and make it unresponsive.

• “Time to standby” accepts a value in seconds between 15 and 254 (0 (zero) will never go to the

standby screen) that determines how long the LCD display will show the current screen before

returning to the standby screen. The standby screen simply reads “LCD display in standby…”

along with the USB connection status (“USB” will blink when connected).

• “Extra byte to read” is a legacy feature that is no longer supported.

• “Default screen” allows the default screen to be selected which is used on power up, as well as

when clicking the red back button from one of the main menu screens.

o Selecting Custom will make two additional settings appear, “Header” and “Result

floats”.

▪ “Header” allows a point name index to be selected (1..200) that will be used for

the text of the top line of the LCD display.

1. Index 200 can be used for the controller’s name.

▪ “Result floats” allows four RES_FLT channels to be selected that will have their

present values shown on the bottom line of the LCD display.

• LCD screen overview: (use up and down arrows to switch screens in the order below)

o Start

▪ Displays I2C status, firmware version (sub version will blink), date, and time.

o Alarms

▪ Displays Alarm message of the active alarm with the lowest ID.

o Operate

▪ Allows operator to Set (priority 11) or local override (Priority 1) the binary

outputs (BO_1-BO_40).

1. Hold the up and down arrow buttons simultaneously to access the

Operate screen options.

2. Use the up or down arrow buttons to select between “Operate all” and

“Relay Operate”, and then press the enter button.

3. If selecting “Relay Operate” use the up or down arrow buttons to select

a Binary output and then press the enter button.

41

4. Use the up or down arrow buttons to select between “Off”, “On”,

“OL_ON” (local override On), “OL_OFF” (local override off) or “auto”

(release local override).

o View

▪ Displays the present values for TMR, RES_BIT and RES_FLT type points.

1. Press the enter button to access the View screen options.

2. Use the up or down arrow buttons to select between “timer”, “result

bits” and “res. values” (RES_FLT), and then press the enter button.

3. Use the up or down arrow buttons to select the appropriate point

channel.

o Hardware

▪ Displays all IO point present values and priorities.

1. Press the enter button to access the Hardware screen options.

2. Use the up or down arrow buttons to select between “See binary I/O”,

analog outputs, “Analog input” and “BO priority lev.” then press enter.

3. Use the up or down arrow buttons to browse through sets of point

channels with their present values.

o Communication

▪ Displays various communication related information along with RMT_1-RMT_50

present values.

1. Press the enter button to access Communication screen options.

2. Use the up or down arrow buttons to switch between USB connection

status, USB communication statistics, SPI communication statistics,

COM1 communication statistics, COM2 communication statistics, or

“Remote pt. COM2” (RMT_1-RMT_50 present value).

o Adjust

▪ Allows an operator to Set ADB, ADI, and ADF, calibrate AI or modify schedules.

5. Hold the up and down arrow buttons simultaneously to access the

Adjust screen options.

6. Use the up or down arrow buttons to switch between “Adjust ADB”,

“Adjusts ADI”, “Adjust ADF”, or “calibrate AI”, then press enter. Note

“Schedule adjust” is no longer supported.

7. For Adjust ADB, ADI or ADF, use the up or down arrow buttons to select

a point channel, press enter and then continue to use the up or down

arrow buttons to modify the present value (can only increment ADF’s

+/- 1). Press the enter button when finished.

8. For Calibrate AI, use the up or down arrow buttons to select a point

channel, press enter, and then continue to use the up or down arrows

to increment or decrement the calibration value +/- 1. Press enter when

finished. Note that the calibration type cannot be changed from the LCD

display.

42

o Custom

▪ Displays user configurable text on the top line along with the present value of 4

RES_FLT points in the bottom line. See the LCD display “default screen” option

explanation above.

Dual core display settings
When connected to an OpenBAS-HV-NX10D, the Configuration->Dual core display tab becomes

available.

• “USB memory storage settings” allow for remote points, Binary inputs, Binary outputs and up to

16 other points configured in Configuration->Trends to be sampled and stored on a USB flash

memory device once per minute.

o When connecting a USB flash memory device to the USB-A port on the OpenBAS-HV-

NX10D display:

▪ The yellow USB indicator LED will illuminate momentarily.

▪ A folder will be created in the root folder named “/_NX5_/YR_[XXXX]/MES_[X]/”

(with the current year, and index of the current month respectively).

▪ The /_NX5_/USB_LOG.CSV file will be appended (and created if needed) with

the current time and date.

o When Trends is checked, the GRAF-1.CSV through GRAF-16.CSV files will store the

present value, time and date every minute for the points configured in Configuration-

>Trends.

o When ‘Remote points RMT 51…255’ is checked, GRAF-17.CSV will store the present

value, time and date every minute for them.

o When ‘Remote points RES_FLT 41…255’ is checked, GRAF-18.CSV will store the present

value, time and date every minute for them.

o When ‘Remote points RMT 1…50’ is checked, GRAF-19.CSV will store the present value,

time and date every minute for them.

o When ‘Binary input and output status’ is checked, GRAF-20.CSV will store the state, time

and date every minute for BI_1-40 (EB) and BO_1-40 (SB).

o “Include headers in CSV files” will store the point type and channel number beside each

sample point when checked in the files GRAF-17.CSV through GRAF-20.CSV.

• “Display language” will change the language used on the OpenBAS-HV-NX10D’s display only

(OpenBAS-HV-CORE2).

• Common display tasks:

o Checking the IP address (of an SPI connected ETH3), controller time and date.

▪ From the Start screen press the Enter button to view the IP address. Use the

Right and Left arrow buttons to switch between IP address, time and date.

o To view the present value of any Binary inputs, Binary outputs, Lighting groups, Analog

inputs or Analog outputs, switch to the main Hardware screen and press the Enter

button. Use the right and left arrow buttons to switch between point types.

43

▪ For the Analog input and output sub-screens, pressing the Enter button will

enable the up and down arrow buttons to traverse through all the point

channels. Press the red button to go back.

Viewing, Setting and understanding the internal point database

The present value and name of each point in the controllers point database can be viewed and set from

within the Values and trends->Points tab. Select an object type from the main dropdown list to view

those points in a table.

• Universal inputs (AI, BI, UI)

o View the state or present value of all 40 analog or binary inputs in the point database.

o Each universal input can be used as binary or analog*

• *The one exception is the OpenBAS-HV-NXSF has 8 dedicated binary inputs, and

8 dedicated analog inputs, and 0 (zero) universal inputs. Note that the PLC or

Logic tab can be used to convert analog inputs to binary inputs using result bits.

o Binary inputs 1-40 convert an input voltage of between 0 (zero) and 4V into a 0 (zero)

value/state and convert an input voltage between 8 and 12V into a 1 value/state*.

• *Unless configured with “Active-low” logic, see Configuring and calibrating

inputs.

o Analog inputs can be configured for many different signal types and so they can take

various voltage (or current) ranges. See the controller’s installation manual for more

information and wiring diagrams.

o In order to take advantage of all 40 universal inputs, 4x OpenBAS-HV-NX10 series

controllers must be configured as Slave type remote points at addresses 100-103 within

a 5th NX10 series ‘master’ controller (See ‘Configuring remote points’ for more

information).

o As of SDS 1.3.1, Analog and Binary inputs can be Overridden by the user. Previously

users had to modify the input calibration to achieve the required input value.

• Note that Overriding an Analog input will also cause the Binary input of the

same channel number to stop updating (and vice-versa). Users have the ability

to override specific values to AI_X and BI_X simultaneously in the Points-

>Universal inputs table.

• Analog outputs (AO)

o View/set the present value and priority of all 10 analog outputs in the point database.

o Analog outputs 1-10 can take an integer percentage between 0 and 100. They can

output a voltage between 0 and 10 volts.

o Analog outputs can bet Set from the PLC or Overridden by communication. The PLC will

no longer be able to set the present value of AO’s when they are overridden. To release

an override to an analog output, click the Auto button from within the analog outputs

table or the Names table.

44

• By default, the present value and override will be cleared during a power cycle

or software reset. This feature can be disabled in Configuration->Power up init.

o In order to take advantage of all 10 analog outputs, 4x OpenBAS-HV-NX10 series

controllers must be configured as Slave type remote points at addresses 100-103 within

a 5th NX10 series ‘master’ controller (See ‘Configuring remote points’ for more

information).

• Binary outputs (BO)

o View/set the state or present value and priority of all 60 binary outputs in the point

database.

o Binary outputs 1-40 are used to control physical relays and binary outputs 41-60 are

reserved for priority-based control of lighting groups.

o Binary outputs have 4 inherent priorities however all BACnet priorities* are supported:

• Local write/Set (equivalent to BACnet priority 11)

• PLC/Logic (equivalent to BACnet priority 9)

• Communication override (equivalent to BACnet priority 5)

• Local override (Requires display, equivalent to BACnet priority 1)

*To enable BACnet priorities, set the COM1 protocol to BACnet MSTP slave. This is required

even when accessing Binary outputs through BACnet/IP.

o In order to take advantage of BO_1 through BO-40, 4x OpenBAS-HV-NX10 series

controllers must be configured as Slave type remote points at addresses 100-103 within

a 5th NX10 series ‘master’ controller (See Configuring remote points for more

information).

• Internal floats (ADF)

o View/set the present value and point names of all 100 ADF type points in the point

database.

o ADF points are typically used to store setpoints and can store any valid IEEE-754 32 bit

float value.

o The value of each ADF point will remain even if power is disconnected or lost.

o Warning: ADF points are stored in the eeprom of “NX core” controllers which can only

be written to about 1,000,000 times. Setting any eeprom based point 1,000,000 times

can permanently damage the memory of the controller. The controller will ignore any

attempts to Set or Override the present value when the current value is the same in

order to limit the number of eeprom writes.

• Internal integers (ADI)

o View/set the present value and point names of all 100 ADI type points in the point

database.

o ADI points are typically used to store setpoints and can take any positive integer value in

the range 0 – 65535.

o The value of each ADI point will remain even if power is disconnected or lost.

45

o Warning: ADI points are stored in the eeprom of “NX core” controllers which can only be

written to about 1,000,000 times. Setting any eeprom based point 1,000,000 times can

permanently damage the memory of the controller. The controller will ignore any

attempts to Set or Override the present value when the current value is the same in

order to limit the number of eeprom writes.

• Internal bytes (ADB)

o View/set the state and point names of all 100 ADB type points in the point database.

o ADB points are typically used to store setpoints and can take any positive integer value

in the range 0 – 255.

o The value of each ADB point will remain even if power is disconnected or lost.

o Warning: ADB points are stored in the eeprom of “NX core” controllers which can only

be written to about 1,000,000 times. Setting any eeprom based point 1,000,000 times

can permanently damage the memory of the controller. The controller will ignore any

attempts to Set or Override the present value when the current value is the same in

order to limit the number of eeprom writes.

• Result bits (RES_BIT)

o View/set the state and point names of all 255 result bit type points in the point

database.

o Result bits are typically used to store the result of a Boolean type of PLC instruction and

can take a value of 0 (zero) or 1.

o Some result bits have predetermined uses and are generally not available for use:

• RES_BIT_1-20 are control bits for Lighting groups 1 through 20 (NX controllers

only, see the Lighting group PLC instruction overview (LightG) for more

information).

• RES_BIT_21-36 are control bits for Timers 1 through 16 (see Timer PLC

instruction for more information).

• RES_BIT_37-39 are fixed oscillating timers at 1, 2 and 4 seconds, respectively.

They have a period (T) of 2, 4 and 8 seconds respectively (50% duty).

• RES_BIT_40-246 are available for use.

• When configuring from EZ-Script, a number of Result bits will be used

for the stack (counting downwards from RES_BIT_240) depending on

the COMPILER_SMALL_STACK compiler flag.

o When using the COMPILER_SMALL_STACK compiler flag, at

most RES_BIT_221-240 will be used.

o When not using the COMPILER_SMALL_STACK compiler flag, at

most RES_BIT_61-240 will be used.

• RES_BIT_247 is a status bit representing whether the controller is online as a

slave in COM1.

• RES_BIT_248 is a status bit representing whether the controller is online as a

slave in COM2.

46

• RES_BIT_249 is a fixed oscillating one-minute timer with a period (T) of 2

minutes (50% duty).

• RES_BIT_250 forces a local override when a button labelled PB1 is depressed

(legacy controllers only).

• RES_BIT_251-253 are power on timers and their value will be True (1) for 1, 5

and 10 seconds respectively immediately after powering up a controller.

• RES_BIT_254 is linked to the green status LED of any OpenBAS controller

display.

• Note that both the Green and Red LEDs cannot be illuminated at the

same time. Red has priority.

• RES_BIT_255 is linked to the red status LED of any OpenBAS controller display.

• Note that both the Green and Red LEDs cannot be illuminated at the

same time. Red has priority.

o Unlike the eeprom-based internal bytes, integers and floats (ADB, ADI, ADF), Result bit

points can be written to as frequently as needed (or as frequently as the PLC loops).

o The state of each Result bit point will be lost if power is lost to the controller unless a

battery backup has been installed. Only the OpenBAS-HV-NX10 series and OpenBAS-LC-

NX12R lighting controllers come with the battery backup by default however every NX

core-based controller has the required battery connector if needed.

• The present value of each Result bit point will be cleared by default every time

the controller is powered up. This setting can be changed in the Configuration-

>Power up init tab.

• Result floats (RES_FLT)

o Result floats are typically used to store the result of a PLC instruction however the

expanded Result floats can be used as extra Remote points on NX controllers when

available.

o Result floats can store any valid IEEE-754 32 bit float value.

o View/set the present value and point names of all result float type points in the point

database.

• Expanded RES_FLT_41-255 are available on the OpenBAS-HV-NX10D.

• Expanded RES_FLT_51-255 are available on any NX core-based controller when

paired with the OpenBAS-ACC-32KNV or similar memory expansion.

• Expanded RES_FLT_41-255 are available on the OpenBAS-NWK-ETH3.

o When configuring from EZ-Script, a number of RES_FLT points will be used for the stack

starting from RES_FLT_40 down to at most, RES_FLT_31.

o Unlike the eeprom-based internal bytes, integers and floats (ADB, ADI, ADF), Result float

points can be written to as frequently as needed (or as frequently as the PLC loops).

• Careful consideration should be given when writing to RES_FLT_41+ (such as

from the PLC) to make sure that remote points that are configured to Set

eeprom-based points such as ADB, ADI or ADFs are not Set too frequently as this

47

can permanently damage the controller’s memory. The controller will ignore

any attempts to Set or Override the present value when the current value is the

same in order to limit the number of eeprom writes.

o The present value of each result float type point will be lost if power is lost to the

controller unless a battery backup has been installed. Only the OpenBAS-HV-NX10 series

and OpenBAS-LC-NX12R lighting controllers come with the battery backup by default

however every NX core-based controller has the required connector.

• The present value of each RES_FLT point will be cleared by default every time

the controller is powered up. This setting can be changed in the Configuration-

>Power up init tab.

• Timer (TMR)

o View the present value, control bit state, reload point*, reload present value*, and

mode of every timer in the point database.

• *reload point and reload present value are for decrementing timer modes only.

o There are 16 Timer points in each controller.

o An undefined mode indicates that the timer has not been configured in the PLC.

o As of SDS-1.3.0 TMR points are no longer read only and can be Set by the user.

o Control bit type and channel (RES_BIT_21-36) cannot be changed.

o See the Timer instruction overview for more information.

• Remote points (RMT)

o The present value of all remote points, including NX expanded remote points (RMT_51-

255, RES_FLT_41-255), can be viewed in Configuration->Remote points.

• RMT_51-255 are available on the OpenBAS-HV-NX10D or any NX core-based

controller paired with the OpenBAS-ACC-32KNV or similar memory expansion.

• COM1-RMT_1-1000 and COM2-RMT_1-1000 are available on the OpenBAS-

NWK-ETH3.

o Remote points need to be configured in order for their present value to be Set with

(copied from) the current value of a point existing on another controller through a

fieldbus (see Configuring remote points).

o The present value of RMT_1-50 (NX controllers) will be lost if the controller loses power

unless the backup battery has been installed.

o The present value of RMT_51+ will be reset to 0 (zero) during a power cycle or software

reset when using the OpenBAS-HV_NX10D, and the values will remain unchanged

during a power cycle or software reset when using the OpenBAS-ACC-32KNV memory

expansion.

o Careful consideration should be given when writing to remote points (such as from the

PLC) to make sure that remote points that are configured to Set eeprom-based points

such as ADB, ADI or ADFs are not Set too frequently as this can permanently damage the

controller’s memory. The controller will ignore any attempts to Set or Override the

present value when the current value is the same in order to limit the number of

eeprom writes.

48

o See Configuring remote points for more information on the various types of remote

points.

Viewing trends
Trends can be viewed in the Values and trends->Trends tab.

• Currently available trends will show up in the main dropdown box.

• Trends must first be configured in Configuration->Trends (See Configuring trends)

• The Refresh button will reload all available trends currently available on the controller.

• The Redraw button will reload all sample points of the currently selected trend from the

controller.

• The Export button will export the currently selected trend’s sample points into a CSV (comma

separated values) file.

Configuring trends
Up to 16 trends can be configured in the Configuration->Trends tab. Trends can be configured to store

the present value, time and date of any point at a predefined interval. Since storage is limited, these

trends are often used as a backup measure since there are more trending options, features and storage

available when using the System Management Studio (Powered by Niagara).

• The number of sample points that can be saved depends on the storage mode and point type.

Trend type Number of sample points

Binary + time + date 248

Value 248

Value + time 165

Value + time + date 124

• Binary type trends will be checked once per minute for a change in value. When the value has

changed, the time and date will be saved along with the present value.

• Non-binary type trends can have their sampling interval set at 1*, 5, 10, 15, 20, 30, or 60

minutes.

o * One-minute intervals are temporary and will automatically switch to a 5-minute

interval once the buffer is filled.

• When a trend’s storage is full, the oldest sample point will be deleted to make room for the

newest sample point. This is commonly referred to as a FIFO (First in, First out) or circular buffer.

• The Clear data button can be used to erase all sample points from a trend’s storage. This is

commonly used when changing the point being sampled within a specific Trend.

Configuring remote points
Remote points can be configured from within the Configuration->Remote points tab. Depending on the

controller and memory expansions, there can be two types of remote points available which are RMT_1-

255 points (COM1-RMT_1-1000, COM2-RMT_1-1000 for OpenBAS-NWK-ETH3), and RES_FLT_41-255

(NX controllers only, RES_FLT_1-40 are PLC result registers only and cannot be configured as remote

49

points). Both RMT and RES_FLT type remote points work the same way. After clicking the Configuration-

>Remote points tab, the System Design Studio will begin reading remote point configurations from the

controller. Remote points exist on a master controller, but their present value is periodically updated

with the present value of a point existing on a slave controller that is connected through a fieldbus. Be

sure to configure the fieldbus and communication settings of all controllers connected to the fieldbus

for the remote points to show an online status. In addition, it is important to consider the remote

point’s managing COM port as well as the Last point to poll setting(s).

• Use the main drop-down box to:

o Switch between viewing RMT and RES_FLT type remote points when available on “NX

core” controllers.

o Switch between viewing COM1-RMT_1-1000 and COM2-RMT_1-1000 on the OpenBAS-

NWK-ETH3

• Enter and select the device Address, Object type and Channel to configure a remote point.

o Note: For MODBUS type remote points, The Object type is selected from a drop down,

so do not include the Object type number when entering the Channel. Ex. For the

MODBUS entity number 400001 (Holding register), select Holding Register from the

Object type dropdown and enter 1 for the Channel.

▪ MODBUS Remote point Channels can be configured to any integer from 1 to

65535 (inclusive).

▪ MODBUS Remote points configured as Input registers or Holding registers can

read or Set a Present value to any integer from 0-65535 (inclusive).

• Since many controllers have more than 1 fieldbus or COM port, it is necessary to identify which

COM port will be used to poll for specific remote points. The “managing COM port” is listed

beside each remote point under the COM column.

o For “NX core” controllers the managing COM port depends on which COM ports have

been configured with master type protocols, as well as the expanded RMT_51+ toggle

option in Configuration->Communication which allows the user to select whether

RMT_51-255 will be managed by COM2 or COM3. For more information see the

OpenBAS Remote Point Truth Table.

o For the OpenBAS-NWK-ETH3, COM1-RMT_1-1000 are managed by COM1 and COM2-

RMT-1-1000 are managed by COM2.

• Slave type remote points (aka slave expansions) allow every physical IO point (AI, BI, AO, BO) of

a slave controller to be polled with the use of only 1 remote point.

o Slave type remote points can only be used in conjunction with device addresses 100,

101, 102 and 103.

o It is recommended to only use OpenBAS-HV-NX10 series controllers as the slave

expansion controllers in order to take advantage of all 40 UI, 40 BO and 10 AO available

in the master controllers internal point database.

o Configuring a Slave type remote point with address 100 will copy the present values of

the IO points from the slave controller (AI_1-8, BI_1-8, BO_1-8 and AO_1-2) into the

50

master controller’s AI_9-16, BI_9-16, BO_9-16 and AO_3-4. Similarly, configuring a Slave

type remote point with address 101 will copy that slave’s IO points into the master

controller’s AI_17-24, BI_17-24, BO_17-24 and AO_5-6 and so on.

▪ Configuring a Slave type remote point with address 101, without configuring a

slave type remote point with address 100, will still copy into the master

controller’s AI_17-24, BI_17-24, BO_17-24 and AO_5-6. This means the master

controller’s AI_9-16, BI_9-16, BO_9-16 and AO_3-4 will continue to be unused in

this scenario.

▪ Do not configure separate remote points for any points that are already

included as part of a Slave expansion.

o Reserved remote points for Slave expansions.

▪ When using the OpenBAS-HV-NX10D, RMT_51-54 are reserved for slave

expansions when managed by com2 or com3 (Opto22/N2 type), but they are

not reserved when managed by COM1 (Modbus type) since only RMT_1-50 can

be configured as slave expansions in COM1.

▪ When using the OpenBAS-HV-NX10D, RES_FLT_41-44 are reserved for slave

expansions.

▪ When using the OpenBAS-ACC-32KNV or similar memory expansion, RMT_51 to

RMT_54 and RES_FLT_51 to RES-54 are not reserved.

• Wireless (WLS) type remote points are used to configure points such as temperature or

humidity from an OpenBAS-HV-WLSTH wireless temperature and humidity sensor. The

OpenBAS-HV-WLSTH device(s) must first be configured in the Configuration->Wireless devices

tab (see Connecting wireless devices).

o Wireless type remote points are only supported on COM2 managed Remote points 1-

255 (see the OpenBAS Remote Point Truth Table).

▪ At least COM2 must be set as Optomux Master. Make sure that COM2 shows up

in the COM column of the Configuration->Remote points table. If not, please

review the OpenBAS Remote Point Truth Table.

o After selecting WLS from the Object type dropdown, select a point type and the ID of

the specific OpenBAS-HV-WLSTH which can be found in Configuration->Wireless devices

tab (the first wireless device added would be ID 1 and so on).

• RMT_1 to RMT_10 on “NX core” controllers, and when managed by COM2 have an adjustable

poll rate or priority setting which can be adjusted in the Configuration->Communication tab.

o Select RMT_1 to RMT_X (max 10) and then select a multiple of 200ms for the polling

period.

o The controller will stop polling non prioritized remote points whenever the time since

the prioritized points were last polled has reached the selected polling period for

prioritized remote points. Once the prioritized points have been polled, the controller

will continue polling the remote points where it left off.

• Last point to poll

51

o Each fieldbus has a “Last point to poll” setting which will cause the controller to stop

polling the present value of all remote points after the selected remote point channel,

even if they are configured.

o Note: Similar, and in addition to the Last point to poll setting, an expanded RMT or

RES_FLT point enabled by the OpenBAS-ACC-32KNV memory expansion on “NX core”

controllers with an address of zero and a type of NULL will disable all higher remote

point channels for RMT or RES_FLT remote points, respectively.

• Offline points

o The controller will attempt to poll all configured remote points whether they are online

or offline.

o The controller will wait up to 200ms for a slave controller to respond to each request

meaning every offline point will add about ~180ms each to the poll period (cycle time).

▪ It is important to note that all configured remote points must be online for

optimal communications.

Connecting wireless devices
Wireless devices such as the OpenBAS-HV-WLSTH can be added or configured in the Configuration-

>Wireless devices tab after connecting* an OpenBAS-HV-RF433R wireless receiver module (supported

by all NX core-based controllers with COM2).

*Do not connect or disconnect the OpenBAS-HV-RF433R or any other accessories or modules while the

controller is powered.

• Use the “no” symbol toggle button to enable or disable the wireless receiver.

• Add or configure up to 10 wireless devices.

o Each wireless device is identified with a group number (1-10) and address (1-199).

o A green circle indicates the controller is receiving packets from the wireless device and a

red circle indicates that there is an issue (Device offline, out of range, wrong group or

address).

• Remove a wireless device by hovering over the device’s row and clicking the garbage can icon.

• View all information from a device by hovering over the device’s row and clicking the magnifying

glass with a plus symbol.

o Group: 1-10 (typically used to group wireless devices in a zone).

o Address: 1-199.

o Online: true or false (by default, a wireless device is marked offline when no packets are

received for 90 seconds).

o Mode: Off / Auto / Manual.

o Temperature: displays the temperature sensed by the wireless device.

o Humidity: displays the relative humidity sensed by the wireless device.

o Fan speed: 1, 2, and 3 is the fastest (the fan speed to be used when Mode is set to

Manual).

52

o Occupied temperature setpoint: the temperature setpoint to be used when the zone is

occupied (19-27 °C).

o Unoccupied temperature setpoint: the temperature setpoint to be used when the zone

is unoccupied (19-27 °C).

o Humidity setpoint: the relative humidity setpoint in percent (0-100%).

o Proportional band: 1°C / 1.5°C / 2°C (the temperature range around the setpoint where

the heating, cooling or fan states will not change).

• Individual remote points must be configured (managed by COM2) for each wireless device-

based point needed (see Configuring remote points).

Backup to disk
A controller’s entire database can be backed up into a single text-based *.json file and be stored or

transferred as needed. Right click a controller from the side panel and select “Backup to disk”. Select

whether to backup Logic, Setpoints, Configuration or some combination of all 3 options and select OK.

Browse to an appropriate location and type a descriptive file name.

• Since a backup can contain different sets of information (i.e., setpoints only, COM3 settings, PLC

2, expanded remote point configurations etc.), it is important to describe exactly what is

included in the file name and be as detailed as possible.

• It is recommended to create a folder structure in Windows Explorer similar to the project

structure to prevent confusion. I.e., /project name/building 1/HVAC/slave address

1/xxxxxxLSC.json (LSC for Logic + Setpoints + Configuration).

• Backing up Logic, Setpoints and Configuration separately allows for each part of the controller

database to be restored individually as well.

• Selecting Logic will backup PLC1, PLC2* and PLC3* instructions. *When available

• Selecting Setpoints will backup Internal bytes (ADB), Internal Integers (ADI) and Internal floats

(ADF).

• Selecting Configuration will backup all settings found within the Configuration tab along with all

point names.

Restore from disk
To restore a previously saved backup (*.json) file, right click a controller item from the side panel and

select “Restore from disk”. Browse to and select the appropriate backup file and click Open.

• Restore from disk will restore everything that is in a backup file. For example, if you backed up

both Logic and Setpoints into a single file, it would not be possible to restore only Logic, or only

Setpoints.

o Note that restoring a Configuration backup can make a controller go offline since the

communication settings may change.

• The database size that the backup (including Logic, Configuration, or both) was created from

must match the database size of the controller being restored to. For example, a backup

including either Logic, Configuration or both that was made from a controller with the standard

53

database can only be restored to a controller with the standard database. Since all database

sizes support the same set of Internal bytes (ADB), Internal integers (ADI) and Internal floats

(ADF), a backup of Setpoints only can be restored to any NX core-based device regardless of

whether it is an OpenBAS-HV-NX10D or has a memory expansion accessory.

SMS alerts
SMS or text message alerts can be sent using an OpenBAS-NWK-NXSMS controller. An active standard

size SIM card is needed on a GSM network. When connecting to an OpenBAS-NWK-NXSMS controller

and opening the Configuration main tab, the “SMS alerts” sub-tab becomes available. It is important to

note that the OpenBAS-NWK-NXSMS controller uses Section three from the Dynamic memory to store

the information needed for the SMS alerts and so Trends 13-16, PLC2 and 4KB of script storage are

unavailable.

• Up to 20 SMS messages can be configured.

• Use the Enable/Disable option to disable a specific SMS alert without having to clear the

configured details.

• RES_BIT channel selects the RES_BIT control point used to trigger the controller to send an SMS

alert. SMS alerts will be sent when the present value of the selected RES_BIT changes from 0

(zero) to 1.

• Repeat allows the SMS alert to be resent up to 10 times provided that the present value of the

selected control point stays at 0 (zero). Set to 0 (zero) to disable resending the SMS alert and

only send the first, original alert.

• Repeat rate determines the time in Minutes between resending each SMS alert and must be

between 1 and 60 Minutes.

• Phone number is the cellular phone number associated with the SIM card that is inserted in the

OpenBAS-NWK-NXSMS controller. Area or country codes must be entered here if needed.

• Alert text is the actual body of the SMS alert that will be sent to the Phone number. You can

create messages up to 64 characters in length.

• The Refresh button can be clicked to reload the SMS configuration from the controller at any

time.

Configure from script (EZ-Script)
To compile a script and load the compiled configuration to a controller, right click any “NX core”

controller item from the side panel and select “Configure from script”. Browse to and select an existing

or new project folder (any windows directory). Selecting Quick configuration will only configure the

controller with parts of the script that have changed since it was previously loaded. Alternatively,

unchecking Quick configuration allows you to specify whether to configure the controller with Logic,

Setpoints, Configuration or some combination of all 3 options. After clicking Configure, a confirmation

dialog will appear. To test compile your script, click Compile and the details will be opened in Notepad.

Click Start to configure the controller from your script, and a loading bar will appear showing the

54

progress. Once finished, the details will be opened in Notepad. If there is a compiler error, a text file will

be opened in Notepad that outlines the error details.

• Project directories are identified by, and must include, a project.nx5 file. This file is created

automatically when clicking the Edit button. If needed, manually create a project.nx5 file by

creating and renaming a basic *.txt file to “project.nx5”. Make sure that you set Windows

Explorer to show file extensions otherwise you may erroneously rename your text file to

“project.nx5.txt”.

• EZ-Scripts can be split into up to 10 separate script files and a definition file. Blank script_1.txt

and script_def.txt files will be created automatically if they do not already exist when clicking

the Edit button. When manually creating script files, the file names must begin with “script_1”

through “script_10” and be used consecutively as needed. The definition file’s name, if used,

must begin with “script_def”. All script files must have the *.txt extension.

o No linking of any kind is needed, the compiler will begin by joining all files together (in

order, starting with script_def.txt followed by script_1.txt and so on) before proceeding.

o Users can modify file names so long as they begin with the correct prefix and have the

correct *.txt extension.

o The System Design Studio will show a Warning if it detects any missing script files. For

example, if script_7.txt is found, the System Design Studio expects script_1.txt through

script_6.txt to exist as well. The script_def.txt file is optional.

• The Compile folder stores a copy of the previously compiled script files as well as all generated

intermediate files. This was added in 1.2.0 to clean up the main project directory and support

custom file names.

• When using Notepad++, a custom language file will be installed to allow for syntax highlighting.

With an EZ-Script file open in Notepad++, click Language->OpenBAS EZ-Script to enable syntax

highlighting for that file.

o Notepad++ significantly improves workflow and is highly recommended.

• As of SDS 1.3.1, the Notepad++ OpenBAS EZ-Script language comes with support for code

folding.

o Within any comment, indicate the start of a collapsible section of code with “{“ or

“fold_start” or “fold start” (without the quotations).

▪ Ex: // any comment followed by {

o Within any comment, indicate the end of a collapsible section of code with “}“ or

“fold_end” or “fold end” (without the quotations).

▪ Ex: // any comment followed by }

• To change the EZ-script language from English, the first line of script_def.txt (if used) or

script_1.txt must include the appropriate language keyword only.

• The first 199 point names defined (keyword DEFINE) will be saved to the controller. The

DECLARE keyword can be used instead of DEFINE for point names that should not be loaded to

the controller.

55

o By default all channel numbers of an object type, for each object type with at least one

point name will be discoverable up to the highest channel number with a point name

Defined. Declared point names will not be discovered if their channel number is higher

than the highest Defined point name of the same object type.

• Note: There is a small difference in scripts which is that dashes (-) are not supported in point

names however they can be added from the Names table from within the System Design Studio.

• See LT-6631 – EZ-script manual for more information on EZ script programming.

File transfer
Depending on the memory accessories and Dynamic memory settings, files up to 112 KB in size can be

stored in the memory of any “NX core” controller. This can be useful for storing the latest copy of a

script for example. Bigger files can be transferred to a USB flash memory stick that is connected to an

OpenBAS-NWK-ETH3 using the web interface.

To upload a file to an “NX core” controller, first make sure there is enough memory by checking in

Configuration->Dynamic memory, and then right click the controller item from the side panel and select

File transfer.

1. Under Select file(s), select all files to be compressed into a zip file (and later stored on the

controller).

2. Under Save as: (in the Upload section) browse to an appropriate location, enter a filename and

click Save.

3. Click the Upload button to begin transferring the compressed *.zip file to the controller.

a. Note that if the file is the same as the file previously uploaded to the controller then a

warning will appear.

To download a file from the controller to a PC, right click the controller item from the side panel and

select File transfer.

1. Under Save as: (in the Download section), browse to an appropriate location, enter a file name

and click Save.

a. Note that if you select an existing *.zip file, after clicking Save, the System Design Studio

will check if the file on the controller matches the file on your PC and display a message

beside “File match:”.

To transfer a file to a USB flash memory stick connected to an OpenBAS-NWK-ETH3:

1. Make sure the USB flash memory stick is formatted as FAT32 and connected to your OpenBAS-

NWK-ETH3.

2. Browse to http://[ETH3’s IP address]/protect/usbupl.htm in a web browser (Google Chrome

recommended), choose your file* and click Save to USB.

56

a. *Files transferred to or from an OpenBAS-NWK-ETH3 must use the 8.3 format with a

maximum of 8 characters for the file name and a maximum of 3 characters for the

extension.

b. In order to access the web pages, you will need to log in. The default username and

password are: Username: admin Password: mircom.

3. The file will be saved into the ROOT/_OPENBAS/ folder.

To transfer files from a USB flash memory stick connected to an OpenBAS-NWK-ETH3 to your computer:

1. Determine the file name and extension of your file that exists within the ROOT/_OPENBAS/

folder of the USB flash memory stick. If the file was transferred using the web interface this can

be determined from looking at the log file:

a. Browse to http://[ETH3’s IP address]/protect/usbdwn.htm and select the Load file

contents below button (an empty text box will default to the log file, USB_DIR.TXT).

i. In order to access the web pages, you will need to log in. The default username

and password are: Username: admin Password: mircom.

2. Type the name of your 8.3 format-named file into the text box and click:

a. Download will download the file to your browsers Download folder.

b. Load file contents below will only be enabled for *.txt, *.htm or *.jsn files and will

simply show the contents within the web page.

Logic and the PLC
The main Logic tab allows for ladder logic-based programming through an intuitive, easy to use, drag

and drop style interface. By default, opening the Logic tab will begin loading PLC 1 and a drop-down

menu at the top right of the screen can be used to switch to PLC 2 or PLC 3 when available. The

controller begins processing the 1st instruction of PLC 1 and continues consecutively until an End*

instruction is reached. Once an End* instruction is processed in PLC 1, the controller will begin

processing the 1st instruction of the next available PLC. If both PLC 2 and PLC 3 are not available, then

the controller will begin processing the 1st instruction of PLC 1 again. *Note that the first End instruction

processed after a Sub (Subroutine) instruction will return to the next consecutive instruction after the

originating Sub instruction (see the Sub instruction overview for more information).

• Each PLC is filled with End instructions by default, and they must be deleted before adding a

new instruction.

• To add an instruction, drag (click and hold) any instruction from the instruction list and drop

(release left mouse button) into an empty PLC instruction area.

o While “dragging”, the mouse icon will change from a No icon to a + icon to indicate that

the instruction can be “dropped” at the mouse’s current location.

• To delete an instruction from an instruction rung hover over it and click the circled X icon that

appears on the right side.

• Instructions can be disabled (skipped by the controller) without having to delete them by

hovering over an instruction and clicking the No icon. A Disabled instruction’s background colour

57

will change and the instruction can be re-enabled by hovering over and clicking the circled

checkmark icon.

• To edit or modify an instructions inputs or outputs, hover over and click the pencil icon, modify

as needed and then click the checkmark to save the changes to the controller (if in online

mode). To revert any changes, click the X icon.

o Note: The channel number text box does not allow invalid numbers such as empty or

blank. This means you cannot backspace or clear the channel number before entering a

new one. The correct process is to highlight the current Channel number either by

double clicking or pressing Shift + (Left or Right arrow keys).

• Live values of the points used in any instruction can be viewed by left clicking the instruction.

When multiple instructions are selected (left click the first, Shift left click the last), the first 3

instructions will show live values.

o Note: Since the instructions are processed by the controller much faster than the live

values are updated, the values may not accurately represent their value at the time the

instruction was processed. If the value of a point needs to be known at a specific

instruction, the Debug mode and Debug point can be used to halt the controller. See

further down in this section for more information.

• Offline mode allows for copying or removing blocks of instructions without affecting the logic

currently running on the controller. Offline mode is represented by the rung numbers at the left

side of the PLC being highlighted along with an orange Logic tab icon. Each PLC has its own

online or offline state which is quickly visible in the Logic tabs right click context menu.

o To enter offline mode left click (and optionally hold shift key and left click another

instruction) to select one or more instructions and then:

▪ Drag and drop the selection onto another instruction to copy and paste all

selected instruction rungs above the instruction they were “dropped” on. This

will increase the total amount of rungs that can be viewed/modified in the

current PLC.

▪ Right click any instruction that is not currently selected and select Copy above

here to copy and paste all selected instruction rungs above the instruction that

was right clicked on. This will increase the total amount of Rungs that can be

viewed/modified in the current PLC.

▪ Right click the selected instructions and click Remove Rung(s). This will decrease

the total amount of Rungs that can be viewed/modified in the current PLC.

o To save changes to the controller and return to online mode right click the logic tab and

select:

▪ Refresh current PLC will reload the PLC from the controller and any offline

changes will be lost.

▪ Upload PLCX to controller will save all offline changes in PLC X to the controller.

• Debug mode allows for all logic processing to halt on the controller when a specific RES_BIT is

Set to True. This is useful in a variety of applications including debugging scripts that reuse stack

variables in order to view a stack variable’s Present value at a specific point in the logic.

58

o Debug mode can be enabled from the Logic tab’s right click context menu.

o RES_BIT_246 is the default debug point and will display a default point name in the

ladder logic editor. This can be changed but the default point name is hardcoded for

RES_BIT_246.

o Debug mode being enabled is represented by an orange controller name in the side

panel with an orange dot beside it. The logic tabs icon will also change to orange.

o When the controller is halted, the controller’s name is red in the side panel with a red

square beside it. The Logic tabs icon will also change to red.

o Debug mode can be disabled from the controller’s right click context menu as well as

the Logic tab’s right click context menu.

o To resume processing logic without disabling debug mode, select “Clear RB.X and

resume” from the Logic tab’s right click context menu.

• When configuring a controller from EZ-Script, it may be hard to follow or understand the

resulting PLC instructions within the ladder logic editor, so it is typically recommended to use

one or the other.

o There is a script.map file that gets created inside the [script directory]/Compile/ folder

that details the mapping between each line of script and the generated ladder logic

rungs.

Logic instruction overview
There are many instructions available for use in the OpenBAS PLC’s and they are grouped into Ladder

(boolean), Math, Cmp (comparison) and Others categories within the Logic tab’s instruction list. Every

instruction has its own specific use, and the details can be found below.

Ladder (boolean) type instructions
Basic ladder type instructions treat inputs as either True or False depending on their present value. A

present value of less than 1 is treated as False and a present value of 1 or greater is treated as True.

Ladder type instructions must use a Result Bit as the output. The output Result Bit will be True (1) or

False (zero) depending on the specific instruction and the present value of its configured inputs.

• Make sure to name all configured points in order to avoid using them again accidentally.

• Not all instructions and object types are currently available on the OpenBAS-NWK-ETH3.

And instruction

• Configuration:

o Select up to four input points of any type.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when all configured inputs are True.

If any configured inputs are False, the output will be False.

o Null or unconfigured inputs are treated as True for this instruction.

59

Nand instruction (inverted And)

• Configuration:

o Select up to four input points of any type.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be False when all configured inputs are True.

If any configured inputs are False, the output will be True.

o Null or unconfigured inputs are treated as True for this instruction.

Or instruction

• Con figuration:

o Select up to four input points of any type.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when at least one of the configured

inputs is True. If all configured inputs are False, the output will be False.

o Null or unconfigured inputs are treated as False for this instruction.

Remote online (Or instruction)
In next release this will appear as its own instruction however behind the scenes it reuses code from the

Or instruction, and so it can currently be used by dragging an Or instruction into a PLC and configuring

according to below.

• Configuration:

o Select the first input as any Remote point (including Result Float type remote points) to

check the online status for and leave the other three inputs as blank/null.

o Select RES_BIT_245 for the output.

• Functionality:

o The state of Result Bit 245 will be True when the selected Remote point is online and

will be false when the selected Remote point is offline.

o Typically this is then used to run alternative logic.

Nor instruction (inverted Or)

• Configuration:

o Select up to four input points of any type.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be False when at least one of the configured

inputs are True. If all configured inputs are False, the output will be True.

o Null or unconfigured inputs are treated as False for this instruction.

60

Xor instruction (Exclusive Or)

• Configuration:

o Select one input point for the two left most logic gates and a second input for the two right

most gates. The System Design Studio will automatically configure the corresponding gates

as changes are made.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be False when both configured inputs are

False, True when exactly one of the configured inputs is True and False when both

configured inputs are True (often remembered with the phrase “One or the other but not

both”).

o Null or unconfigured inputs are treated as False for this instruction.

Nxor instruction (Also known as Xnor, inverted Exclusive Or)
• Configuration:

o Select one input point for the two left most logic gates and a second input for the two right

most gates. The System Design Studio will automatically configure the corresponding gates

as changes are made.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when both configured inputs are

False, False when exactly one of the configured inputs is True and True when both

configured inputs are True.

o Null or unconfigured inputs are treated as False for this instruction.

Invert instruction (Also known as Not)

• Configuration:

o Select one input point of any type.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when the input is False and False

when the input is True.

o A null or unconfigured input is treated as False for this instruction.

And/Or instruction (A∙B+C∙D)

• Configuration:

o Select four input points of any type for A and B on the top line, and C and D on the bottom

line.

o Select a Result Bit for the output.

• Functionality:

61

o The state of the selected output Result Bit will be True when A and B are both True, or when

C and D are both True (or any three or four inputs are True).

o A single null or unconfigured input on either line will be treated as True but two null or

unconfigured inputs on either line will be treated as False.

Or/And/Inv instruction (And/Or inverted)

• Configuration:

o Select four input points of any type for A and B on the left, and C and D on the right.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when at least one of A or B are False,

and at least one of C or D are False. If A and B are both True, the output will be False.

Similarly, if C and D are both True then the output will be False.

o A single null or unconfigured input will be treated as True. If both A and B are left null or

unconfigured, they will be treated as False. Similarly, if both C and D are left null or

unconfigured, they will be treated as False.

Math type instructions
Math type instructions perform some type of calculation on the configured inputs and store the result in

a Result Float type point.

• Note that if a Remote point is offline, the value used for calculations will be 0 (zero).

• Null or unconfigured inputs will be ignored in the calculation.

• The Int point type can be used as any constant integer between 0 and 254. Select a value where you

would select a channel number for any other point type. For example, Int.5 will be considered as a

point with a present value of 5.

• Make sure to name all configured points in order to avoid using them again accidentally.

Min instruction (minimum)
Find the minimum value.

• Configuration:

o Select up to four input points of any type.

o Select a Result Float for the output.

• Functionality:

o The present value of the selected output Result Float will equal the present value of the

configured input with the lowest present value.

Max instruction (maximum)
Find the maximum value.

• Configuration:

o Select up to four input points of any type.

62

o Select a Result Float for the output.

• Functionality:

o The present value of the selected output Result Float will equal the present value of the

configured input with the highest present value.

Avg instruction (average)
Calculate an average.

• Configuration:

o Select up to four input points of any type.

o Select a Result Float for the output.

• Functionality:

o The present value of the selected output Result Float will equal the average present value of

all configured inputs.

“+” instruction (addition)
Calculate a sum.

• Configuration:

o Select up to four input points of any type.

o Select a Result Float for the output.

• Functionality:

o The present value of the selected output Result Float will equal the total sum of all

configured inputs or addends.

“-“ instruction (subtraction)
Calculate a difference.

• Configuration:

o Select up to four input points of any type.

o Select a Result Float for the output.

• Functionality:

o The 2nd ,3rd and 4th inputs, the subtrahends, will be subtracted from the first input, the

minuend, and the result (difference) will be stored in the selected output Result Float.

o When configuring less than four inputs, the System Design Studio will automatically arrange

them so that the first configured instruction is used as the minuend or starting number.

“*” instruction (multiplication)
Calculate a product.

• Configuration:

o Select two input points of any type.

o Select a Result Float for the output.

63

• Functionality:

o The inputs (the multiplicand and the multiplier) will be multiplied together and the result or

product will be stored in the selected output Result Float.

o Leaving either input null or unconfigured will cause the instruction to be skipped by the

controller.

“/” instruction (division)
Calculate a quotient.

• Configuration:

o Select two input points of any type.

o Select a Result Float for the output.

• Functionality:

o The first input, the dividend, will be divided by the second input, the divisor, and the result

(quotient) will be stored in the selected output Result Float.

o If the present value of the 2nd input (divisor) is 0 (zero) the output will be 0 (zero).

o Leaving either input null or unconfigured will cause the instruction to be skipped by the

controller.

Cmp (comparison) type instructions
Comparison type instructions compare the present value of two operands (Op1 and Op2) and store

either a True (1) or False (0) in the selected output Result Bit.

▪ Leaving any inputs as null or unconfigured will cause the instruction to be skipped by the controller.

“>” instruction (greater than)
Determine whether Op1 is greater than Op2.

• Configuration:

o Select two input points of any type for Op1 and Op2.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when the present value of Op1 is

greater than the present value of Op2 and False otherwise.

“<” instruction (less than)
Determine whether Op1 is less than Op2.

• Configuration:

o Select two input points of any type for Op1 and Op2.

o Select a Result Bit for the output.

• Functionality:

64

o The state of the selected output Result Bit will be True when the present value of Op1 is less

than the present value of Op2 and False otherwise.

“=” instruction (equal)
Determine whether Op1 is exactly equal to Op2.

• Configuration:

o Select two input points of any type for Op1 and Op2.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when the present value of Op1 is

exactly equal to the present value of Op2 and False otherwise.

“>=” instruction (greater than or equal to)
Determine whether Op1 is greater than, or exactly equal to Op2.

• Configuration:

o Select two input points of any type for Op1 and Op2.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when the present value of Op1 is

greater than or exactly equal to the present value of Op2 and False otherwise.

“<=” instruction (less than or equal to)
Determine whether Op1 is less than, or exactly equal to Op2.

• Configuration:

o Select two input points of any type for Op1 and Op2.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when the present value of Op1 is less

than or exactly equal to the present value of Op2 and False otherwise.

“!=” instruction (not equal to)
Determine whether Op1 is not exactly equal to Op2.

• Configuration:

o Select two input points of any type for Op1 and Op2.

o Select a Result Bit for the output.

• Functionality:

o The state of the selected output Result Bit will be True when the present value of Op1 is not

exactly equal to the present value of Op2 and False otherwise.

65

Other instructions

All instructions that do not fall under Ladder, Math, or Cmp are located under the Other header

within the Logic tab instruction list.

• Make sure to name all configured points in order to avoid using them again accidentally.

• Many of these instructions require an index to a consecutive number of points. It is important to

name and Set these points appropriately from within the Values and trends tab.

Label instruction
Label instructions are often used to identify what a group or section of instructions are used for. In EZ-

Script, Labels are required for Jump and Sub (Call) instructions.

▪ Configuration:

o Enter up to nine characters into the text box.

• Functionality:

o Label instructions are for reference only.

Long label instruction
Long label instructions can only be created from script but they can be viewed and deleted from within

the Logic tab. A Long label instruction uses multiple consecutive instructions to store up to 105

characters (32 characters max between spaces).

• Configuration:

o Not applicable

• Functionality:

o The first instruction used will display the entire label and the following instructions will

remain blank.

o The disable and edit buttons do nothing for each instruction rung involved in the long

label instruction.

o Click the delete button of any involved instruction rung to delete the entire label.

Timer instruction
After dragging in a timer instruction, hover over “TIMER” and a drop down will appear with two

additional options, OSCILLATOR and OSCILLATOR(F). The TIMER option creates a 100ms, or 1000ms

countdown timer that is typically used to trigger an action when it reaches 0 (zero). The OSCILLATOR

option is like the TIMER option except it decrements every 50ms and has an extra output for Result Bit

or Binary Output toggling. OSCILLATOR(F) allows a Result Bit or Binary Output to toggle at a rate

between 0 (zero) and 10Hz depending on the input percentage value (0.0-100.0).

▪ TIMER (1s or 1/10s countdown timer)

o Configuration:

▪ SW (switch)

66

• Select a Result Bit to be used as the timers control bit. The System Design

Studio will automatically select the appropriate output TMR (RES_BIT_21-36

are the control bits for TMR_1-16 respectively).

▪ Output

• Select a TMR point to store the output value. The System Design Studio will

automatically select the appropriate control bit (RES_BIT_21-36 are the

control bits for TMR_1-16 respectively).

▪ RV (reload value point)

• Select an Internal integer (ADI) to store the reload value.

▪ Itvl (interval)

• Select a decrement interval of either 100ms or 1000ms.

o Functionality:

▪ The present value of the TMR output will be set to the present value of the selected

reload value point each time this instruction is processed, and the control bit is

True (1). The present value of the TMR output will start decrementing by 1 at the

interval selected when the control bit is False (zero), and until it reaches 0 (zero).

▪ OSCILLATOR (0.05s countdown timer with output toggling)

o Configuration:

▪ SW (switch)

• Select a Result Bit to be used as the timers control bit. The System Design

Studio will automatically select the appropriate output TMR (RES_BIT_21-36

are the control bits for TMR_1-16 respectively).

▪ Output

• Select a TMR point to store the output value. The System Design Studio will

automatically select the appropriate control bit (RES_BIT_21-36 are the

control bits for TMR_1-16 respectively).

▪ Itvl (interval)

• Select any point whose present value will be used to control the pulse

interval (where the selected pulse output point will toggle every

[interval/20] seconds).

▪ PULS (pulse output)

• Select a Binary Output or Result Bit to toggle every [interval/20] seconds.

*Binary outputs are restricted from changing faster than 2.5Hz.

o Functionality:

▪ The present value of the TMR output will be instantly set to the present value of the

selected interval point when it reaches 0 (zero).

▪ The present value of the TMR output will decrement by 1 every 50ms when the

control bit is True (1) and will stop decrementing when the control bit is False (zero).

▪ The selected pulse output will toggle every time the present value of the TMR

output reaches 0 (zero).

▪ OSCILLATOR(F) (percentage to frequency/pulse converter)

67

o Configuration:

▪ SW (switch)

• Select a Result Bit to be used as the timers control bit. The System Design

Studio will automatically select the appropriate output TMR (RES_BIT_21-36

are the control bits for TMR_1-16 respectively).

▪ Output

• Select a TMR point to store the output value. The System Design Studio will

automatically select the appropriate control bit (RES_BIT_21-36 are the

control bits for TMR_1-16 respectively).

▪ Freq (frequency)

• Select any point whose present value will be used as a percentage (0.0-

100.0) to control the pulse frequency between 0 (zero) and 10 Hz.

▪ PULS (pulse output)

• Select a Binary Output or Result Bit to toggle at the current frequency.

*Binary outputs are restricted from changing faster than 2.5Hz.

o Functionality:

▪ When the control bit is True (1), the selected pulse output will toggle at the rate

determined by the frequency input (entered as an integer from 0-100) multiplied by

10 Hz. The duty cycle is roughly 50%.

▪ For reference, the TMR output value is calculated and reset based on the present

value of the frequency point when the timer reaches 0 (zero). The TMR present

value is decremented every 0.05 seconds when the control bit is True until it

reaches 0 (zero).

Jump instruction
The Jump instruction allows for either permanent or conditional skipping of instructions. Conditional

Jump instructions allow for If-Then-Else type logic.

▪ Configuration:

o Select up to one input point of any type.

o Click the gate to toggle whether the jump is conditional on the input point being True or

False.

o Enter a number between 1 and 200 for the number instructions to jump.

• Functionality:

o When the gate is not inverted, the controller will skip the configured number of instructions

when the input is True (>= 1) and will continue to the next consecutive instruction when the

input is False (< 1).

o When the gate is inverted, the controller will skip the configured number of instructions

when the input is False and will continue to the next consecutive instruction when the input

is True.

68

o A null or unconfigured input will always skip the configured number of instructions

regardless of whether the gate is inverted or not.

Call instruction (subroutine call)
Call instructions can save space (PLC instructions) and simplify logic when requiring the same

functionality more than once in any program. A Call instruction allows a consecutive set of instructions

located at any point in the PLC to be “jumped to” and processed whenever needed. This instruction is

similar to what various programming languages refer to as functions or methods. As of SDS 1.3.1, Call

instructions can now call subroutines that exist in other PLC’s.

▪ Configuration:

o Select up to one input point of any type.

o Click the gate to toggle whether the call is conditional on the input point being True or False.

o Select the PLC where the subroutine instructions will be.

o Enter the rung number of the first instruction of the subroutine (it is recommended that the

first instruction of a subroutine is a Label instruction).

o Create the subroutine:

▪ Must be located after the main END instruction of any available PLC.

▪ Must end in an END instruction.

• Functionality:

o When the gate is not inverted, the controller will jump to the configured PLC and rung

number only when the input is True (>= 1) and will continue to the next consecutive

instruction when the input is False (< 1).

o When the gate is inverted, the controller will jump to the configured rung number only

when the input is False and will continue to the next consecutive instruction when the input

is True.

o After jumping to an instruction due to a Call, the controller will continue to process

instructions consecutively until an END instruction is processed, and then return to the next

consecutive instruction following the originating Call instruction.

o A null or unconfigured input will always jump to the configured instruction number

regardless of whether the gate is inverted or not.

o Nested Call instructions are not supported. This means you cannot call a subroutine from

within another subroutine.

End instruction
The End instructions causes the controller to skip the remaining instructions in the current PLC.

o Configuration:

▪ None.

o Functionality:

69

▪ When an End instruction is processed, the controller will begin processing the first

instruction of the next consecutive and available PLC and return to the first instruction of

the first PLC when all PLC’s have been processed.

▪ The only exception is when an End instruction is processed following a Sub instruction call.

In this scenario, the controller will begin processing the next consecutive instruction

following the originating Sub call.

LightG instruction (lighting group)
Lighting groups allow for simplified logic when controlling many lighting circuits with similar scheduling

requirements. Lighting groups allow multiple Binary outputs to be controlled with a single input. Lighting

groups are not necessarily restricted to lighting control applications.

▪ Configuration:

o Select between Result Bit 1 through 20 and Binary Output 41 through 60 as the input

control bit.

o Select up to eight Binary Outputs to be controlled together, as a group.

▪ Functionality:

o When this instruction is processed, all configured Binary Outputs will be Set on (priority 9)

when the control bit is True (1) and Set off when the control bit is False (zero).

o Lighting groups are commonly used with Schedules and up to 10 schedules can be created

to control each lighting group control bit.

o Result Bit’s 1 through 20 are reserved for lighting group control bits and can be substituted

with Binary Outputs 41 through 60 respectively when priority-based control is needed.

Binary Outputs 41 through 60 are internal registers only (no relays are mapped by default)

that support the four priority levels (*however all 16 BACnet priorities are mapped when

COM1 is set to BACnet MSTP protocol).

o A schedule configured to control RES_BIT_1 will not affect a lighting group configured with

BO_41 as the control bit. Similarly, a schedule configured to control BO_41 will not affect a

lighting group configured with RES_BIT_1 as the control bit.

Assign instruction (controlling outputs)
The assign instruction is most used for the control of outputs within the PLC by copying the present

value from one point to another. The assign instruction allows for two separate copy operations within a

single instruction. The OpenBAS-NWK-ETH3 can copy to or from points on an SPI connected NX10 series

controller as well. For assigning more than two outputs in a single instruction, see the Multiple Assign

instruction overview below. Warning: Do not assign an analog signal (any constantly changing value) to

any EEPROM-based points (ADB, ADI, ADF). An EEPROM-based point can only be Set around 1,000,000

times before the respective memory block may fail. The ladder editor will prefix these instructions

output points with “(Avoid)” for ADB, ADI, and ADF object types as a reminder.

• Configuration:

o For OpenBAS-NWK-ETH3 only, select SPI-NX or ETH3 scope for each input and output.

70

o Select up to two points of any type for the inputs.

o Select up to two writeable (AI/BI/TMR not supported) points for the outputs.

• Functionality:

o When this instruction is processed, the present value of each input point will be copied into

the present value of the respective output point.

o Null or unconfigured inputs or outputs will cause the respective input or output to be set as

null or unconfigured as well and the respective copy operation will be ignored.

Multiple Assign instruction
The Multiple Assign instruction allows the present value of up to 40 consecutive points of any type to be

copied into another 40 consecutive points of any type. Warning: Do not assign an analog signal (any

constantly changing value) to any EEPROM-based points (ADB, ADI, ADF). An EEPROM-based point can

only be Set around 1,000,000 times before it may fail. The ladder editor will prefix these instructions

output points with “(Avoid)” for ADB, ADI, and ADF object types as a reminder.

▪ Configuration:

o # (number of points to copy)

▪ Select the number of points to copy the same way a point channel would be

selected. For example, Int.10 would be interpreted as a point with a present value of

10.

o src ptr (source pointer)

▪ Select the first of any consecutive points whose present value will be copied from.

o out ptr (output pointer)

▪ Select the first of any writeable (AI, BI, TMR not supported) consecutive points

whose present value will be copied to.

• Functionality:

o When this instruction is processed, the present value of the configured input points will be

copied into the present value of the configured output points.

o For example, with # set to Int.3, src ptr set to RB.1 and out ptr set to BO_1, the present

value of BO_1, BO_2 and BO_3 will be Set (priority 9) with the present values of RES_BIT_1,

RES_BIT_2, and RES_BIT_3, respectively.

Totalizer instruction (pulse accumulator and energy metering)
After dragging in a Totalizer instruction, hover over ACCUMULATOR and a drop down will appear with

two additional options which are ACCUM/PERIOD (accumulation per period), and ENERGY ACCUM

(energy accumulation). The ACCUMULATOR option allows for indefinite pulse counting whereas the

ACCUM/PERIOD is based on a time period and will store the total pulse count for the current and

previous period only. Both ACCUMULATOR and ACCUM/PERIOD are commonly used in conjunction with

flow meters. The ENERGY ACCUM option is typically used for calculating energy usage in kilowatt hours

and will integrate (calculate the “area under the curve”) an input every 10 minutes and add the result to

the existing value.

71

• ACCUMULATOR

o Configuration:

▪ src (source)

• Select any binary type of point (BI, BO, RES_BIT) for the pulse input source.

o Use BI_1 and/or BI_2 for high frequency signals up to 250Hz (15,000

pulses per minute).

o Use BI_3-8, BO_1-8 and RES_BIT_1-255 for signals up to 10Hz (600

pulses per minute).

o Use BI_9-40, or BO_9-60 for signals up to 1Hz* (60 pulses per

minute). *The supported signal frequency for these points is highly

dependent on the number of configured remote points and many

other factors.

▪ EVENT (signal edge)

• Select To Zero, To One, or Any to count on falling edge, rising edge or both

falling and rising edges, respectively.

▪ Total

• Select any Result float to store the total number of the selected EVENT that

occurs on the selected src.

▪ EEPROM

• Select any Internal float (ADF) to store a copy of the present value of Total.

o Functionality:

▪ The present value of Total will increment by one every time the selected EVENT

occurs on the selected src signal.

▪ If the present value of Total is less than EEPROM (usually during a power cycle), it

will be Set to that value.

▪ The present value of EEPROM will be Set with the present value of Total every five

minutes.

▪ To clear or reset an accumulation, first Set the EEPROM point’s present value to

zero and then Set the Total point’s present value to zero. If you try to Set the

present value of Total first, it will be Set back to the present value of EEPROM.

• ACCUM/PERIOD (accumulation per period)

o Configuration:

▪ src (source)

• Select any binary type of point (BI, BO, RES_BIT) for the pulse input source.

o Use BI_1 and/or BI_2 for high frequency signals up to 250Hz (15,000

pulses per minute).

o Use BI_3-8, BO_1-8 and RES_BIT_1-255 for signals up to 10Hz (600

pulses per minute).

o Use BI_9-40, or BO_9-60 for signals up to 1Hz* (60 pulses per

minute). *The supported signal frequency for these points is highly

72

dependent on the number of configured remote points and many

other factors.

▪ EVENT (signal edge)

• Select To Zero, To One, or Any to count on falling edge, rising edge or both

falling and rising edges, respectively.

▪ P/min (Period in minutes)

• Select between 1, 5, 10, 15, 20, 30, or 60 minute periods.

▪ Total

• Select any Result float to store the number of selected signal edges during

the current period.

▪ LastP (previous period total)

• Select any Result float to store the total number of selected signal edges of

the previous period.

o Functionality:

▪ The present value of Total will increment by one every time the selected EVENT

occurs on the selected src signal.

▪ When the period has elapsed (Total has been accumulating for the selected period),

the present value of LastP will be Set with the present value of Total and then Total

will be reset to zero.

• ENERGY ACCUM (energy accumulator)

o Configuration:

▪ src (source)

• Select any Result float for the power input.

o Use the Math type instructions to calculate Power =

Current*Voltage*Power Factor. If voltage and/or power factor are

unavailable, constants can be used for estimation. Alternatively,

using a current input (in Amps) will calculate Amp hours (A h).

▪ Total

• Select any Result float to store the total sum of all samples of the source

input during the current 10-minute period.

▪ samples

• Select any Result float to store the total number of samples that have been

summed into Total during the current period.

▪ energy

• Select any Internal float (ADF) to store the accumulation of the power input

integrations (i.e., kWh for kW input, Wh for W input, A h for A input).

o Functionality:

▪ When this instruction is processed, the present value of samples will increment by 1

and the present value of the power input will be added to the present value of

Total.

73

▪ Every 10 minutes, the present value of Total and samples will be used to calculate

the energy usage over that period which is then added to the present value of

energy. Both Total and samples will then be Set to zero.

PropCtrl instruction (proportional control)
The PropCtrl instruction is often used for temperature or pressure reset control strategies. This

instruction will adjust an output between MIN and MAX depending on another value such as the outside

air temperature. The configurable integration constant acts as a smoothing function on the output and

is often used to prevent machine cycling.

Configuration:

o PV (process variable or feedback)

▪ Select any point for the process variable or feedback input.

o setPoint and band (proportional band)

▪ Select any two consecutive Result floats (RES_FLT), Internal bytes (ADB), Internal

integers (ADI), or Internal floats (ADF) to store the control setpoint and the

proportional band, respectively.

• The System Design Studio will automatically adjust each input appropriately

as the other input changes.

• Setpoint is the desired value of the parameter being controlled.

• Proportional band is the typical error range or expected deviation of the

controlled parameter from the setpoint.

o MIN (minimum), MAX (maximum), and INT (integration constant)

▪ Select any three consecutive Result floats (RES_FLT), Internal bytes (ADB), Internal

integers (ADI), or Internal floats (ADF) to store the minimum and maximum allowed

output values as well as the integration or smoothing constant, respectively.

• The System Design Studio will automatically adjust each input appropriately

as the other input changes.

• MIN and MAX should be set between zero and 100 for Analog outputs,

otherwise they can be any valid IEEE-754 32 bit float value.

• INT can be set to zero to disabled output smoothing.

o (output)

▪ Select any Result float or Analog output for the output actuator.

• Functionality:

o The present value of the output will vary proportionally between the present values of the

configured minimum and maximum points as the process variable (feedback) varies

between the difference of the proportional band and the setpoint.

o For example, with a minimum of zero, a maximum of 100, a setpoint of 50 and a

proportional band of +10, the output will be zero (minimum) when the feedback is <= 50

(setpoint) and the output will be 100 (maximum) when the feedback is >= 60 (setpoint +

74

band). The output will vary proportionally between 0 (minimum) and 100 (maximum) as the

feedback varies from 50 (setpoint) to 60 (setpoint + band).

▪ The logic can be flipped by making the proportional band negative. In the above

example, changing the proportional band from +10 to -10 would cause the output to

be zero (minimum) when the feedback is >= 50 (setpoint) and the output to be 100

(maximum) when the feedback is <= 40 (setpoint + band), and the output would

vary proportionally in between 50 and 40.

o The present value of the INT point, the integration or smoothing constant, affects how long

it will take for the output to match the proportionally calculated value. Every second, a

fraction of the remaining difference between the proportionally calculated value and the

previous output will be added to the previous output. For example, if the proportionally

calculated output is 10 but the current output is 5, an INT value of 2 will cause the output to

increase to 7.5 (current output + difference/INT or 5 + (10-5)/2 = 7.5) after the first second,

and 8.75 after the 2nd second and so on.

o When the output is an Analog output, the minimum and maximum present values will be

ignored if they are Set with values less than zero or greater than 100 as these are the

absolute limits.

AHU/RTU instruction (air handling unit or roof top unit)
This instruction allows for bang-bang (also known as 2-step, on/off or hysteresis) control of a heating or

cooling stage with run/enable control, minimum on and off time control, and minimum inter-stage time

control (when more than one of these instructions are used together for multi-staged systems).

• Configuration:

o run

▪ Select any point to control whether this stage is enabled (>= 1) or disabled (< 1).

▪ Typically, this will be a Result bit used as the output in a previous AND instruction to

make sure the stage is enabled, the fan is on, and there is no low- or high-pressure

alarm.

o setPt (setpoint), Diff (difference), TMRoff (timer off), TMRon (timer on), TMRitr (timer inter-

stage), mode

▪ Select any 6 consecutive Internal bytes (ADB), Internal integers (ADI), Internal floats

(ADF) or Result floats to store the above parameters, respectively.

▪ The System Design Studio will automatically adjust each input appropriately as the

other inputs change.

▪ Setpoint is the desired value of the parameter being controlled.

▪ Difference (also referred to as proportional band or deadband) is the range,

centered around the setpoint, where the output stage will remain in its current

state.

▪ Timer off is an optional index between 1 and 16 referring to the timer point to be

used for the minimum off time for this stage.

75

• The timer instruction must be configured separately as either 1s or 1/10s

countdown timer.

• Set the value of the respective point to zero to disable.

▪ Timer on is an optional index between 1 and 16 referring to the timer point to be

used for the minimum on time for this stage.

• The timer instruction must be configured separately as either 1s or 1/10s

countdown timer.

• Set the value of the respective point to zero to disable.

▪ Timer inter-stage is an optional index between 1 and 16 referring to the timer point

to be used for the inter-stage time (when more than one of these instructions are

used together for multi-staged systems).

• The timer instruction must be configured separately as either 1s or 1/10s

countdown timer.

• Set the value of the respective point to zero to disable (for each instruction

when using more than one for multi-staged systems).

• Use the same inter-stage timer for each instruction when using more than

one for multi-staged systems.

▪ Mode should be set to zero for heating and 1 for cooling.

o PV (process variable)

▪ Select any point for the process variable of feedback point.

o (output)

▪ Select any Binary output or Result bit for the output stage.

• Functionality:

o When the present value of the run point is zero, the present value of the output point will

be zero.

o When enabled in heating mode (mode = 0), the output stage will turn on (Set to 1) when the

process variable is less than or equal to the [setpoint – difference/2] and the output stage

will turn off (Set to zero) when the process variable is greater than or equal to the [setpoint

+ difference/2].

o When enabled in cooling mode (mode = 1), the output stage will turn off (Set to zero) when

the process variable is less than or equal to the [setpoint – difference/2] and the output

stage will turn on (Set to 1) when the process variable is greater than or equal to the

[setpoint + difference/2].

o When configured, the timer on and timer off count down timers will be Set with their

configured reload values each time the stage is turned on and off respectively. The timers

prevent the stage from turning off or on when the timer on and timer off points are not

equal to zero, respectively. If a change of state is required before the respective timer

reaches zero, the output state will not change (at least until the next time the instruction is

processed).

o When configured, the inter-stage timer will be Set to its configured reload value each time

the stage is turned on. The inter-stage timer prevents a stage from turning on while the

76

timer is not equal to zero. When configured on multiple AHU/RTU instructions for multi-

staged systems, this timer prevents all stages from being commanded on at the same time

with a configurable time between each stage.

HourCnt instruction (hour counter)
This instruction will accumulate the amount of time in hours that an input is True (1). This is commonly

used for keeping track of machine or stage runtimes.

• Configuration:

o Src (source)

▪ Select any point to be used as the source input. This is typically a point that

represents the status of a machine or stage.

o Cnt (count)

▪ Select any Result float to store the current 5-minute partial hour count.

o EE (eeprom)

▪ Select any Internal float (ADF) to store the total accumulated runtime in hours that

the input was True (1).

• Functionality:

o Count will accumulate the runtime while source is True (1) until it reaches 5 minutes (0.0833

hours) and then count will be added to the present value of eeprom, and count will be reset

to zero.

Alt/Pll instruction (alternate and parallel)
This instruction will alternate the use of between 2 and 8 machines (pumps, air handlers, fans, chillers

etc.) each time there is a “call” with optional machine-running feedback/monitoring and individual

machine enables. The “call” can be in the form of an on/off binary signal or an analog signal such as

when a temperature drops below a threshold. The parallel feature can be enabled to allow the machines

or stages to run at the same time, with a configurable time between when each one starts. In this case,

the leading machine or stage will alternate each time there is a new “call”.

• Configuration:

o fbIn (feedback input)

▪ Set to On to require feedback within a configurable amount of time that the

machine or stage has turned on. This requires an extra input for each machine or

stage, and a timer.

o extIn (external enable inputs)

▪ Set to On to allow each machine or stage to be enabled or disabled on demand. This

requires an extra input for each machine or stage.

o aPV (analog process variable)

▪ Set to On when using an analog signal for the process variable or feedback. This

requires that setpoint and prBand are Set to the appropriate values.

o PL (parallel)

77

▪ Set to On when the machines or stages are intended to run simultaneously. This

requires a timer to prevent each machine or stage from turning on at the same

time.

o UP/DN (increment or decrement)

▪ Select Up to increment the leader each time there is a “call” or Down to decrement

the leader each time there is a “call”. The present value of leader will wrap around

when incremented or decremented passed the last machine or stage.

▪ Note: Do not manually change the leader when the instruction is running (i.e., there

is a “call”).

o input 1 (first feedback or enable input)

▪ Select the first Binary input, Result bit, or Remote point of a consecutive number of

points to be used for the feedback inputs, enable inputs or both.

▪ When using both feedback inputs and enable inputs, the first [number of stages]

inputs will be used for the feedback and then the enable inputs will follow.

▪ For example, with 4 stages, fbIn set to On, extIn set to On, and input 1 set to BI_1,

BI_1-4 will be used for the feedback inputs of the 4 stages respectively and BI_5-8

will be used for the enable inputs of the 4 stages, respectively.

o stage# (number of stages), leader, sTMR (stage timer), aTMR (alarm timer), setPt (setpoint),

prBand (proportional band)

▪ Select any 6 consecutive Internal bytes (ADB), Internal integers (ADI), or Internal

floats (ADF) to store the above parameters, respectively.

▪ The System Design Studio will automatically adjust each input appropriately as the

other inputs change.

▪ Stage# is the number of machines or stages to be controlled.

▪ Leader identifies which machine or stage will turn on during the next “call”.

• When PL is On, Leader identifies the first machine or stage that will turn on.

▪ sTMR is an index to the countdown timer to be used between stages when PL is On.

• The timer instruction must be configured separately as either a 1s or 1/10s

countdown timer.

• When using both sTMR and aTMR, aTMR must be configured for less time

than sTMR.

• It is highly recommended to name or reserve this point even when not in

use in case it is needed later.

• Note that in firmware 3.03.5 or older, sTMR cannot be 0 (zero) regardless if

PL is On or not, when using the feedback inputs.

▪ aTMR is an index to the countdown timer to be used for the time before checking

the feedback input after a machine or stage has been commanded on, when fbIn is

On.

• Timer instruction must be configured separately as either 1s or 1/10s

countdown timer.

78

• When using both sTMR and aTMR, aTMR must be configured for less time

than sTMR.

• It is highly recommended to name or reserve this point even when not in

use in case it is needed later.

▪ Setpoint is the desired value of the parameter being controlled and is only used

when aPV is set to On.

• This setpoint is intended to be a constant and care should be taken to not

Set this point more than once every 5 minutes (see ADB, ADI and ADF

overviews in Viewing and understanding the point database).

• It is highly recommended to name or reserve this point even when not in

use in case it is needed later.

▪ prBand (also referred to as deadband) is the range below (less than) the setpoint

that is allowed before initiating a “call” and is only used when aPV is set to On.

• It is highly recommended to name or reserve this point even when not in

use in case it is needed later.

o PV (process variable)

▪ Select any point for the process variable or feedback input. Typically, Binary inputs

or Result bits are used when aPV is set to Off and Analog inputs or Result floats are

used when aPV is set to On.

o (output)

▪ Select the first Binary output or Result bit of a consecutive number of points to be

used as the outputs.

▪ For example, with 4 stages and BO_1 selected as the output, BO_1-4 will be

commanded for the 4 stages, respectively.

• Functionality:

o When using a binary process variable, the current leader will turn on when the process

variable is zero (i.e., there is a “call”). When the process variable changes to 1, the current

leader will turn off and then leader will increment or decrement according to UP/DN.

o When using an analog process variable (aPV is On), the current leader will turn on when the

process variable is less than the [setpoint – pBand]. When the process variable becomes

greater than or equal to the setpoint, the current leader will turn off and then leader will

increment or decrement according to UP/DN.

o When PL (parallel) is On, sTMR will begin counting down to zero when each machine or

stage is commanded on. If there is still a “call” when sTMR reaches zero, the next

consecutive output will be commanded on. This process will continue until all outputs are

commanded on or the setpoint has been reached (or binary input changes to 1).

o When using the feedback inputs, aTMR will begin counting down to zero when any machine

or stage is commanded on. If the respective feedback input is zero when aTMR reaches

zero, the stage will be commanded off and the next consecutive stage will be commanded

on.

79

o When using the enable inputs, any machine or stage whose enable input is 0 (zero) will be

skipped.

In Range instruction (and hysteresis/deadband)
Depending on the configuration, this instruction provides a boolean (on/off) output when the input is

either within boundaries, outside of boundaries, crossing above boundaries, or crossing below

boundaries. After dragging the In Range instruction into a PLC, hover over “In Range” and a dropdown

box will appear with an option for Hysteresis. Use In Range to check if an input is within or outside of

boundaries and use Hysteresis for simple deadband control.

• In Range

o Configuration:

▪ pv (process variable)

• Select any point for the process variable or input.

▪ high

• Select any point for the high/upper boundary.

▪ low

• Select any point for the low boundary.

▪ incl bnd (inclusive boundaries)

• Set as True to include the configured boundary values during the in-range

check or false to exclude them.

▪ invert

• Set as true to invert the output.

▪ (output)

• Select a Result bit to store the output.

o Functionality:

▪ When incl bnd is true, the non-inverted output will be True (1) when PV is both

greater than or equal to low, and less than or equal to high, otherwise the output

will be False (0).

▪ When incl bnd is false, the non-inverted output will be True (1) when PV is both

greater than low, and less than high, otherwise the output will be False (0).

• Hysteresis

o Configuration:

▪ pv (process variable)

• Select any point for the process variable or input.

▪ high

• Select any point for the high/upper boundary.

▪ low

• Select any point for the low boundary.

▪ incl bnd (inclusive boundaries)

80

• Set as true to include the configured boundaries during the hysteresis check

or false to exclude them.

▪ (output)

• Select a Result bit to store the output.

o Functionality:

▪ When incl bnd is true, the output will change to True (1) when the PV becomes

greater than or equal to high and the output will change to False (0) when the PV

becomes less than or equal to low.

▪ When incl bnd is false, the output will change to True (1) when the PV becomes

greater than high and the output will change to False (0) when the PV becomes less

than low.

Start/Stop instruction
This instruction creates a common latch configuration that allows two momentary switches (a start

button and a stop button) to turn on and off an output respectively with an optional emergency stop

switch. The term latch refers to the fact that even after releasing the start button, the output will remain

on until the stop button is pressed.

• Configuration:

o Start

▪ Select any point for the Start input. Typically, this is either a Binary input or a Result

bit.

o Stop

▪ Select any point for the Stop input. Typically, this is either a Binary input or a Result

bit.

o FStop (force stop)

▪ Select any point for the force stop or emergency stop input.

o (output)

▪ Select any Result bit for the output.

• Functionality:

o When FStop is False (0) the output will be False (0).

o When FStop is True (1), the output will become True after the Start input is read as True

(while this instruction is being processed) and remain True until the Stop input is read as

True in which case the output will remain False.

o To disable the force or emergency stop feature, Set FStop to Int.1.

o If a single emergency stop button is wired to multiple machines, use the same FStop point

for each Start/Stop instruction.

Limit instruction
This instruction will limit any input value between an upper and lower boundary by storing the limited

value into a Result float.

81

• Configuration:

o pv (process variable)

▪ Select any point for the process variable input.

o min (minimum)

▪ Select any point to store the minimum allowed value.

o max (maximum)

▪ Select any point to store the maximum allowed value.

o (output)

▪ Select any Result float to store the limited output value.

• Functionality:

o If pv is less than min, the output will be Set to min.

o If pv is greater than max, the output will be Set to max.

o If pv greater than or equal to min and less than or equal to max, the output will be Set to the

present value of pv.

PID instruction (proportional, integral, derivative controller)
This instruction creates a feedback controller with proportional, integral and derivative terms and many

additional features. A common example of a feedback controller is the cruise control system in a car.

With constant power, a car ascending a hill would slow down however the cruise control system takes

the current speed as the feedback, compares against the desired speed, and adjusts the power so that

the car reaches the desired speed quickly and without overshooting.

• Configuration:

o pv (process variable)

1. Select any point for the process variable or feedback input.

dt (time derivative)

2. Select any Result float to store the amount of time that has passed since the

instruction was last processed.

o pGain (proportional gain), iGain (integral gain), dGain (derivative gain), min (minimum), max

(maximum), rfPtr (Result float pointer), pidScale, oScale (output scale), offset, stPt (setpoint)

1. Select any 10 consecutive Internal floats (ADF) to store the above parameters,

respectively.

2. The System Design Studio will automatically adjust each input’s channel

appropriately as the other inputs change.

3. pGain is the multiplier of the proportional term. A higher value will decrease rise

time but increase overshoot.

4. iGain is an optional multiplier of the integral term. A higher value will eliminate

steady state error and decrease rise time however it will also increase overshoot,

increase settling time and degrade stability.

82

5. dGain is an optional multiplier of the derivative term. A higher value will decrease

overshoot, and decrease settling time however the general stability will begin

degrading if this value gets too big.

• It is strongly recommended to Set this gain to zero due to various

complications.

6. Min is the minimum allowable value of the output. The output will never go below

this value (prior to either scaling option).

7. Max is the maximum allowable value of the output. The output will never go above

this value (prior to either scaling option).

8. rfPtr is an index to the first of 4 consecutive Result floats (If rfPtr is configured to

ADF_6, then Setting ADF_6 with a present value of 1 will cause the instruction to

use RES_FLT_1-4):

• The 1st indexed Result float will store the accumulating integral term.

• The 2nd indexed Result float will store the previous error.

• The 3rd indexed Result float will be used as a variable setpoint when fStPt is

set to Off. This is useful when using this instruction in conjunction with the

PropCtrl instruction for reset control strategies.

• The 4th indexed Result float will store the PID scaled output (the instructions

main output multiplied by pidScale).

9. pidScale is multiplied by the instructions output and the product is stored in the 4th

indexed Result float. A value of zero will prevent the controller from Setting the 4th

indexed Result float however it is still recommended to name and reserve the point

in case it is needed in the future.

10. oScale is multiplied by the instructions output and the product is stored as the new

output. Note that the output will remain at zero if this point’s present value is zero.

11. Offset is added to the setpoint prior to calculating error regardless of whether fStPt

is set to On or Off. This allows the default output to be configured when there is

zero error. This is intended for Proportional-Only control.

12. stPt is used as the fixed setpoint when fStPt is set to On. This point will never be Set

by the instruction when fStPt is set to Off however it is still recommended to name

and reserve this point in case it is needed in the future.

o fStPt (fixed setpoint)

1. Set to On for the instruction to use stPt as a fixed setpoint or set to Off for the

instruction to use the 3rd indexed Result float (see rfPtr) as a variable setpoint.

o (output)

1. Select any Result float to store the controller’s output.

• Functionality:

o This instruction is implemented as a reverse acting controller also referred to as an “Up-Up”

controller. This means that when the controlled output goes up, the process variable also

goes up.

83

1. This instruction uses the parallel or ideal form with simple gains and each terms

action is based on the error:

2. Note that manually changing a fixed setpoint can therefore cause an instant,

possibly large change in output. It is recommended to implement a switch to disable

the instruction according to the bumpless note below and use the switch to disable

the instruction before changing the setpoint.

o By default, the error is calculated as [setpoint – pv] and so a pv less than the setpoint will

make the output positive and vice versa. To invert this logic, for a direct acting or “Up-

Down” controller, use two “*” (multiplication) instructions to multiply the feedback input

and setpoint input by -1 and use the resulting products as the new pv and setpoint,

respectively.

1. Regarding the note below on bumpless control, it is important to calculate (and

invert if needed) the setpoint after the PID instruction so that the first PID

calculation will have the setpoint equal to the process variable. This assumes the

setpoint has been initialized or Set to the process variable (feedback input) at power

up and any time the instruction is skipped.

o There is a built-in integral windup prevention that will only accumulate the integral term

when the output is within the min and max limits, or the output is at max but the integral

term is decreasing, or the output is at min but the integral term is increasing. This prevents

the integral term from increasing to very high or low numbers when the system is not

connected or running that would otherwise cause significant overshoot (when first

connecting or running the system).

1. Note that the min and max limits are enforced on the output prior to either scaling

with pidScale or oScale. Because of this, it may make sense to do any scaling in a

separate multiplication instruction for increased visibility.

o Note on bumpless control: When a controller with a PID instruction first powers on,

especially if this PID instruction will be skipped or disabled at times, there are a few things

that should be done to prevent “bumps”. The below 3 steps will make sure the PID

instruction’s first calculation will be equal to whatever value the output may be manually

Set to. This will allow the PID instruction to ramp from the manually commanded output to

the calculated output according to the gains selected by the user when the instruction is re-

enabled. These calculations should be done at first power on, as well as any time the PID

instruction is skipped:

1. Clear (Set to zero) the previous error (2nd indexed Result float, see rfPtr).

2. Continually Set the setpoint (whether using the fixed stPt or the variable 3rd indexed

Result float) equal to the PV (process variable/feedback input). This will zero out the

84

error and the derivative term due to an unknown dt (time since previous

calculation).

3. Set the accumulating integral term (1st indexed Result float) equal to the output

divided by the integral gain (iGain). For example PIDInt = PIDOut / PIDKI .

o There is an example script located at C:\OpenBAS\Examples\14-2-PID-Bumpless.txt

PropStager instruction (proportional stager)
This instruction will turn on the required number of stages depending on the process variable input

starting from the first stage of the current leader machine. This instruction supports up to 8 machines

with 4 stages each for a total of 32 stages. This instruction has additional options for main stage enables,

main stage hour counting, and main or sub-stage feedback monitoring and alarming.

• Configuration:

o run

▪ Select any point to control when this instruction should run. If the selected point’s

present value is zero, all output Result bits will be Set to zero.

o pv (process variable)

▪ Select any point to be used as the required number of running stages input. Often

this is the output of a PID instruction and should be limited between zero and 32

depending on the number of stages to be controlled.

o timer, stg cnt (stage count), substg cnt (sub-stage count), stg ptr (stage pointer), stg ldr

(stage leader), out ptr (output pointer), hc ptr (hour counter pointer), fb ptr (feedback

pointer), alm ptr (alarm pointer), config (configuration)

▪ Select any 10 consecutive Internal bytes (ADB), Internal integers (ADI) or Internal

floats (ADF) to store the above parameters, respectively.

▪ The System Design Studio will automatically adjust each input appropriately as the

other inputs change.

▪ timer is an index to the timer used for both the minimum time before turning on

any 2 stages and the time before alarm when using the feedback inputs.

• The timer instruction must be configured separately as either a 1s or 1/10s

countdown timer.

▪ stg cnt should be set to the number of main stages or machines to be controlled and

must be between 1 and 8 inclusively.

▪ Substg cnt should be set to the number of sub-stages or stages per machine and

must be between 1 and 4 inclusively.

▪ Stg ptr is an index to consecutive Internal bytes (ADB) used for the main stage

enables. When set to zero, no Internal bytes will be used.

• The number of consecutive Internal bytes used is equal to the present value

of stg cnt.

85

▪ stg ldr should be set to the index of the main stage or machine to be turned on first

and must be between 1 and the present value of stg cnt. Often this will be the

output of a LeaderCal instruction or Set manually.

▪ out ptr is an index to the first of consecutive Result bits that represent the state of

each stage. Typically, these output Result bits will be directly or indirectly assigned

to Binary outputs whose relays are physically wired to the individual stages.

▪ hc ptr is an index to the first of [stg cnt] consecutive Result bits that can be used as

inputs to separate HourCnt instructions for each main stage.

• See config below for information on how to enable.

▪ fb ptr is an index to the first of consecutive Result bits that can be used as stage

status inputs for alarming purposes where True indicates a stage is running.

• The number of Result bits used depends on config below and whether the

feedback inputs are disabled, enabled for main stages, or enabled for all

sub-stages and will use [zero], [stg cnt], or [stg cnt * substg cnt] Result bits,

respectively.

▪ alm ptr is an index to the first of consecutive Result bits that can be used as stage

alarm outputs where True indicates a stages feedback was False after the timer

expired.

• The number of Result bits used depends on config below and whether the

alarm outputs are disabled, enabled for main stages, or enabled for all sub-

stages and will use zero, [stg cnt], or [stg cnt * substg cnt] Result bits,

respectively.

▪ config is used to select the required mode of this instruction:

• Set to 0 to disable all three sets of hour counter outputs, feedback inputs,

and alarm outputs.

• Set to 1 to enable the main stage hour counter outputs only.

• Set to 2 to enable main stage feedback inputs and main stage alarm

outputs.

• Set to 3 to enable the main stage hour counter outputs, main stage

feedback inputs and main stage alarm outputs.

• Set to 6 to enable feedback inputs and alarm outputs for all sub-stages.

• Set to 7 to enable feedback inputs and alarm outputs for all sub-stages as

well as main stage hour counter outputs.

o stg out# (stage output number)

▪ Select any Result float to store the current number of stages that have been

commanded on.

• Functionality:

o The present value of leader determines which machine’s stages (I.e. which of the indexed

Result bits from out ptr) will be commanded on first. For example, with stg cnt Set to 4,

substg cnt Set to 4, leader Set to 4, and out ptr Set to 41 (for RES_BIT_41), RES_BIT_53-56

86

would be commanded on when 1-4 stages are needed respectively and RES_BIT_41-52

would be commanded on when 5-16 stages are needed, respectively.

▪ Note that changing the leader will only affect the outputs when there is a change in

the number of currently required stages.

o When the pv becomes greater than or equal to 1, the first stage of the first machine

(determined by leader) will turn on and will only turn off when pv drops below 0.5 (or the

machine is disabled, or the run input is False). The second stage will be commanded on

when the pv becomes greater than or equal to 2 and will not turn off until the pv drops

below 1.5 and so on.

o The run input like an emergency stop will allow the outputs to turn on when True but will

instantly Turn all outputs off when False.

o The main stage enable inputs can be used when stg ptr is not equal to zero. If a main stage

enable input is zero when there is a change in the pv, then all sub-stages of the respective

main stage will be commanded off and the next available stages will be commanded on as

needed.

o Each time a stage is commanded on, the timer will begin counting down and no more stages

will be commanded on or off until the timer expires.

o If feedback and alarm is enabled when the timer expires, each main or sub-stage (depending

on the value of config) that is commanded on will have the appropriate feedback input

checked. If the feedback input is False, then the respective alarm output will be True and

vice-versa.

▪ Alarms are non-latching meaning once the timer has expired, the alarm output will

be True if the feedback is False but will still become False at any time if the feedback

becomes True.

▪ An alarm output will stay True when the respective output is turned off.

▪ If the feedback is already True when the stage is first turned on, the alarm output

will be True until the timer expires.

▪ Alarm outputs can be paired with Start/Stop instructions to create latching alarms in

order to help identify any stages that are cycling or taking too long to turn on.

o When the main stage hour counter outputs are enabled, the respective Result bit will be

True when at least one of a main stage’s sub-stages have been commanded on (regardless

of the feedback and alarm points) and False when none of the sub-stages of the respective

main stage have been commanded on.

▪ The hour counter outputs are typically paired with HourCnt instructions to

accumulate the total runtime.

▪ The hour counter outputs can be used in an AND instruction with the feedback if

required.

LeaderCal instruction (leader and lagger calculator)
This instruction, when processed, will consider up to 8 machines/stages and depending on the

configuration, will output the index of the machine or stage with the least or greatest runtime of the

87

ones that are currently enabled. After dragging the LeaderCal instruction into a PLC, hover over “Leader

Cal” and a dropdown box will appear with an option for Lagger. Use Leader Cal to output the index of

the machine with the least runtime and use Lagger to output the index of the machine with the greatest

runtime.

• Configuration:

o stg cnt (stage count)

▪ Select up to 8 stages to compare runtimes for, the same way a point channel would

be selected. For example, INT.10 would be interpreted as a point with a present

value of 10.

o rt ptr (runtime pointer)

▪ Select the first of [stg cnt] consecutive points of any type whose present values

represent runtimes. The runtimes should be in the same order as the enable flags.

o flg ptr (enable flag pointer)

▪ Select the first of [stg cnt] consecutive points of any type whose present values

represent the enable status of each stage. The enable status points should be in the

same order as the runtimes.

o (output)

▪ Select any non-binary writeable point (AO, ADB, ADI, ADF, RES_FLT, RMT) to store

the index of the stage or machine with the least/greatest runtime, and that is

enabled.

• Functionality:

o When this instruction is processed, each enabled runtime will be compared, and the output

point will be Set with the index of the enabled runtime with the lowest (leader) or greatest

(lagger) value.

o Often the enable status points are calculated using boolean instructions based on whether

the stage is currently running or if the stage has any alarms for example.

o Typically, this instruction is used with a schedule and a jump or sub instruction to only run

this instruction when needed such as once per week. For example:

▪ Create a schedule to Set RES_BIT_40 to 1, once a week.

▪ Create an inverted jump instruction conditional on RES_BIT_40 to jump 2

instructions in PLC1, instruction 1.

▪ Create the leader calculator instruction in PLC1, instruction 2.

▪ Create an assign instruction to assign INT.0 to RES_BIT_40 in PLC1, instruction 3.

o If all the stages are disabled, the output will not change.

Staggered Start/Stop instruction
This instruction allows for up to 40 stages to be turned on and/or off in a staggered fashion. This is

commonly used when multiple stages or machines have significant start up power requirements and

staggering each stage therefor minimizes the peak load. Significant peaks in power usage can cause

many problems and some utility companies even bill based on the peak usage.

88

• Configuration:

o pv (process variable)

▪ Select any point whose present value will be used to initiate the starting or stopping

of the configured stages.

o Timer, stg cnt (stage count), stg ldr (stage leader), enReg ptr (enable register pointer), mode

▪ Select any 5 consecutive Internal bytes (ADB), Internal integers (ADI) or Internal

floats (ADF) to store the above parameters, respectively.

▪ The System Design Studio will automatically adjust each input appropriately as the

other inputs change.

▪ Timer is an index to the timer used for the time between turning on or off any 2

consecutive stages.

• The timer instruction must be configured separately as either a 1s or 1/10s

countdown timer.

▪ Stg cnt should be Set to the number of stages or machines to be turned on or off

and must be between 1 and 40 inclusively.

▪ Stg ldr should be Set to the index of the stage which should be turned on first and

must be between 1 and [stg cnt].

▪ enReg ptr is an index to the first of [stg cnt] consecutive Internal bytes (ADB) to be

used as individual enables for each stage. Set enReg ptr to zero to disable.

▪ Mode is used to configure the mode of operation:

• Set to 1 for staggered start and simultaneous stop.

• Set to 2 for simultaneous start and staggered stop.

• Set to 3 for staggered start and staggered stop.

o stg ptr (stage pointer)

▪ Select the first of [stg cnt] consecutive Binary output, Result bit, Result float or

Remote type points for the output stages.

o cur stg (current stage)

▪ Select any Result float to store the current number of stages that are commanded

on.

• Functionality:

o When configured for staggered start and pv becomes True, the configured stages will begin

turning on, separated by the timer, starting from the leader, and incrementing upwards. For

example, with stg cnt set to 8 and stg ldr set to 4, when pv becomes True, the 4th indexed

output point will be commanded on first followed by the 5th, 6th, 7th, 8th, 1st, 2nd and finally

the 3rd indexed output point.

o When configured for staggered stop and pv becomes False, the configured stages will begin

turning off, separated by the timer, in reverse order from how they were turned on (unless

stg ldr changed).

o When configured for simultaneous start, all outputs will turn on when pv becomes True and

when configured for simultaneous stop, all outputs will turn off when pv becomes False.

89

o When the ADB enables are configured, the stage outputs will be skipped during a start if

their respective enables are False.

▪ With 3 stages and only the 2nd stage disabled, the instruction will turn on the 3rd

stage when the timer expires after turning on the 1st stage. In other words, the

instruction does not waste time waiting for the timer to expire for stages that are

disabled.

▪ Stages can be disabled or re-enabled at any time. Note that enabling multiple stages

after PV has already been Set to 1 will command the outputs on without regard for

the timer.

Special instructions
The special instruction allows for new instructions to be used or tested without updating the System

Design Studio (firmware will need to be updated). After dragging in a Special instruction, hover over

“Instr:100” and a dropdown will appear allowing a number between 100 and 126 to be selected. By

default, there are 4 special instructions available which are for calculating a random number (123),

modulus (124), square root (125) or super heat (126).

• General configuration:

o stpt ptr (setpoint pointer)

▪ Select the first of any type of [stpt cnt] consecutive points typically used for

setpoints.

o stpt cnt (setpoint count)

▪ Select the number of consecutive points being used for setpoints starting from stpt

ptr. For example, INT.10 would be interpreted as a point with a present value of 10.

o pv (process variable)

▪ Select any point typically used as the main input or process variable.

o (other input)

▪ Select any point as required by the specific Special instruction.

o (output)

▪ Select any writeable point (AI, BI not supported) to store the output.

• General functionality:

o The functionality depends on the selected special instruction number.

Random number special instruction
This instruction can be selected using the Special instruction with Instr:123 selected from the main

dropdown. This instruction will generate a pseudo-random number between 0 (zero) and 1.98,

depending on both time and the current number of instructions being processed per second.

• Configuration:

o stpt ptr (setpoint pointer)

▪ Select any point to pass the instruction validation, it will not be used.

o stpt cnt (setpoint count)

90

▪ Select any number, this will not be used.

o pv (process variable)

▪ Select any point to pass the instruction validation, it will not be used.

o (other input)

▪ Leave as null since this will not be used.

o (output)

▪ Select any available RES_FLT to store the pseudo-random number.

▪ Note: do not use any Internal setpoints (ADB, ADI, ADF) unless this instruction is

only being processed less than once every 5 minutes.

• Functionality:

o The selected output Result float will be updated with a pseudo-random number between 0

(zero) and 1.98 every time this instruction is processed.

Modulus special instruction (division remainder)
This instruction can be selected using the Special instruction with Instr:124 selected from the main

dropdown. This instruction will output the remainder after a division.

• Configuration:

o stpt ptr (setpoint pointer)

▪ Select any point to pass the instruction validation, it will not be used.

o stpt cnt (setpoint count)

▪ Select any number, this will not be used.

o pv (process variable)

▪ Select any point to be used as the dividend.

o (other input)

▪ Select any point to be used as the divisor.

o (output)

▪ Select any Result float to store the modulus or remainder.

▪ Note: do not use any Internal setpoints (ADB, ADI, ADF) unless this instruction is

only being processed less than once every 5 minutes.

• Functionality:

o Both the dividend and the divisor will be rounded down to the nearest integer before being

divided and then the selected output point will be Set with the Modulus or remainder each

time this instruction is processed.

Square root special instruction
This instruction can be selected using the Special instruction with Instr:125 selected from the main

dropdown. This instruction will output the square root of the input or process variable.

• Configuration:

o stpt ptr (setpoint pointer)

▪ Select any point to pass the instruction validation, it will not be used.

91

o stpt cnt (setpoint count)

▪ Select any number, this will not be used.

o pv (process variable)

▪ Select any point to calculate the square root of.

o (other input)

▪ Leave as null since this point will not be used.

o (output)

▪ Select any Result float to store the square root.

▪ Note: do not use any Internal setpoints (ADB, ADI, ADF) unless this instruction is

only being processed less than once every 5 minutes.

• Functionality:

o When this instruction is processed the square root of the selected process variable will be

calculated using the Babylonian method with up to 15 iterations.

Superheat special instruction (for R22 refrigerant)
This instruction can be selected using the Special instruction with Instr:126 selected from the main

dropdown. This instruction will calculate the saturation (boiling) temperature in Fahrenheit of R22

refrigerant measured at a certain pressure in PSIG.

• Configuration:

o stpt ptr (setpoint pointer)

▪ Select any point to pass the instruction validation, it will not be used.

o stpt cnt (setpoint count)

▪ Select any number, this will not be used.

o pv (process variable)

▪ Select any point to pass the instruction validation, it will not be used.

o (other input)

▪ Select any point to be used as the measured pressure in PSIG or pounds per square

inch gauge (with respect to atmospheric pressure).

o (output)

▪ Select any Result float to store the saturation temperature in degrees Fahrenheit.

▪ Note: do not use any Internal setpoints (ADB, ADI, ADF) unless this instruction is

only being processed less than once every 5 minutes.

• Functionality:

o This instruction will determine the saturation (boiling) temperature within a range of -40 to

+79 degrees Fahrenheit of a measured pressure in PSIG for systems using R22 refrigerant.

o This instruction is typically used with a “-“ (subtraction) instruction to subtract the

calculated saturation temperature (based on the pressure of the suction line) from the

measured suction line temperature, to calculate superheat.

92

o Alternatively, this instruction can be used with a “-“ (subtraction) instruction to subtract the

measured liquid line temperature from the calculated saturation temperature (based on the

pressure of the liquid line), to calculate subcooling.

	User interface overview
	Selecting a language
	Connecting to and running the NX emulator
	Connecting to controllers
	Configuring network settings and IP address
	Upgrading firmware
	Discovering OpenBAS gateways
	Creating projects
	Removing projects and controllers
	Naming projects and controllers
	Importing projects
	Importing and exporting IP connection lists
	Software resetting controllers
	Power up initializations
	Performing a factory reset
	Memory overview
	Dynamic memory
	Viewing and synchronizing a controller’s real time clock
	Date and time settings
	Creating schedules
	Configuring and calibrating inputs
	Configuring and calibrating outputs
	Output priorities
	Naming points
	Limiting point values
	Configuring fieldbus and communication settings
	Configuring OpenBAS-NWK-ETH3 communication settings through USB flash memory
	Configuring email alerts
	Debugging and testing logic
	Adding expandable memory accessories
	LCD display and alarm configuration
	Dual core display settings
	Viewing, Setting and understanding the internal point database
	Viewing trends
	Configuring trends
	Configuring remote points
	Connecting wireless devices
	Backup to disk
	Restore from disk
	SMS alerts
	Configure from script (EZ-Script)
	File transfer
	Logic and the PLC
	Logic instruction overview
	Ladder (boolean) type instructions
	And instruction
	Nand instruction (inverted And)
	Or instruction
	Remote online (Or instruction)
	Nor instruction (inverted Or)
	Xor instruction (Exclusive Or)
	Nxor instruction (Also known as Xnor, inverted Exclusive Or)
	Invert instruction (Also known as Not)
	And/Or instruction (A∙B+C∙D)
	Or/And/Inv instruction (And/Or inverted)
	Math type instructions
	Min instruction (minimum)
	Max instruction (maximum)
	Avg instruction (average)
	“+” instruction (addition)
	“-“ instruction (subtraction)
	“*” instruction (multiplication)
	“/” instruction (division)
	Cmp (comparison) type instructions
	“>” instruction (greater than)
	“<” instruction (less than)
	“=” instruction (equal)
	“>=” instruction (greater than or equal to)
	“<=” instruction (less than or equal to)
	“!=” instruction (not equal to)
	Other instructions
	Label instruction
	Long label instruction
	Timer instruction
	Jump instruction
	Call instruction (subroutine call)
	End instruction
	LightG instruction (lighting group)
	Assign instruction (controlling outputs)
	Multiple Assign instruction
	Totalizer instruction (pulse accumulator and energy metering)
	PropCtrl instruction (proportional control)
	AHU/RTU instruction (air handling unit or roof top unit)
	HourCnt instruction (hour counter)
	Alt/Pll instruction (alternate and parallel)
	In Range instruction (and hysteresis/deadband)
	Start/Stop instruction
	Limit instruction
	PID instruction (proportional, integral, derivative controller)
	PropStager instruction (proportional stager)
	LeaderCal instruction (leader and lagger calculator)
	Staggered Start/Stop instruction
	Special instructions
	Random number special instruction
	Modulus special instruction (division remainder)
	Square root special instruction
	Superheat special instruction (for R22 refrigerant)

